AMERICAN DIABETES ASSOCIATION

STANDARDS OF MEDICAL CARE IN DIABETES—2019
The simple word Care may suffice to express [the journal’s] philosophical mission. The new journal is designed to promote better patient care by serving the expanded needs of all health professionals committed to the care of patients with diabetes. As such, the American Diabetes Association views Diabetes Care as a reaffirmation of Francis Weld Peabody’s contention that “the secret of the care of the patient is in caring for the patient.”

—Norbert Freinkel, Diabetes Care, January-February 1978
Diabetes Care is a journal for the health care practitioner that is intended to increase knowledge, stimulate research, and promote better management of people with diabetes. To achieve these goals, the journal publishes original research on human studies in the following categories: Clinical Care/Education/Nutrition/Psychosocial Research, Epidemiology/Health Services Research, Emerging Technologies and Therapeutics, Pathophysiology/Complications, and Cardiovascular and Metabolic Risk. The journal also publishes ADA statements, consensus reports, clinically relevant review articles, letters to the editor, and health/medical news or points of view. Topics covered are of interest to clinically oriented physicians, researchers, epidemiologists, psychologists, diabetes educators, and other health professionals. More information about the journal can be found online at care.diabetesjournals.org.

Copyright © 2018 by the American Diabetes Association, Inc. All rights reserved. Printed in the USA. Requests for permission to reuse content should be sent to Copyright Clearance Center at www.copyright.com or 222 Rosewood Dr., Danvers, MA 01923; phone: (978) 750-8400; fax: (978) 646-8600. Requests for permission to translate should be sent to Permissions Editor, American Diabetes Association, at permissions@diabetes.org.

The American Diabetes Association reserves the right to reject any advertisement for any reason, which need not be disclosed to the party submitting the advertisement.

Commercial reprint orders should be directed to Sheridan Content Services, (800) 635-7181, ext. 8065.

Single issues of Diabetes Care can be ordered by calling toll-free (800) 232-3472, 8:30 A.M. to 5:00 P.M. EST, Monday through Friday. Outside the United States, call (703) 549-1500. Rates: $75 in the United States, $95 in Canada and Mexico, and $125 for all other countries. Diabetes Care is available online at care.diabetesjournals.org. Please call the numbers listed above, e-mail membership@diabetes.org, or visit the online journal for more information about submitting manuscripts, publication charges, ordering reprints, subscribing to the journal, becoming an ADA member, advertising, permission to reuse content, and the journal’s publication policies.

Periodicals postage paid at Arlington, VA, and additional mailing offices.

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Introduction</td>
</tr>
<tr>
<td>S3</td>
<td>Professional Practice Committee</td>
</tr>
<tr>
<td>S4</td>
<td>Summary of Revisions: Standards of Medical Care in Diabetes—2019</td>
</tr>
<tr>
<td>S7</td>
<td>1. Improving Care and Promoting Health in Populations</td>
</tr>
<tr>
<td></td>
<td>Diabetes and Population Health</td>
</tr>
<tr>
<td></td>
<td>Tailoring Treatment for Social Context</td>
</tr>
<tr>
<td>S13</td>
<td>2. Classification and Diagnosis of Diabetes</td>
</tr>
<tr>
<td></td>
<td>Classification</td>
</tr>
<tr>
<td></td>
<td>Diagnostic Tests for Diabetes</td>
</tr>
<tr>
<td></td>
<td>A1C</td>
</tr>
<tr>
<td></td>
<td>Type 1 Diabetes</td>
</tr>
<tr>
<td></td>
<td>Prediabetes and Type 2 Diabetes</td>
</tr>
<tr>
<td></td>
<td>Gestational Diabetes Mellitus</td>
</tr>
<tr>
<td></td>
<td>Cystic Fibrosis–Related Diabetes</td>
</tr>
<tr>
<td></td>
<td>Posttransplantation Diabetes Mellitus</td>
</tr>
<tr>
<td></td>
<td>Monogenic Diabetes Syndromes</td>
</tr>
<tr>
<td>S29</td>
<td>3. Prevention or Delay of Type 2 Diabetes</td>
</tr>
<tr>
<td></td>
<td>Lifestyle Interventions</td>
</tr>
<tr>
<td></td>
<td>Pharmacologic Interventions</td>
</tr>
<tr>
<td></td>
<td>Prevention of Cardiovascular Disease</td>
</tr>
<tr>
<td></td>
<td>Diabetes Self-management Education and Support</td>
</tr>
<tr>
<td>S34</td>
<td>4. Comprehensive Medical Evaluation and Assessment of Comorbidities</td>
</tr>
<tr>
<td></td>
<td>Patient-Centered Collaborative Care</td>
</tr>
<tr>
<td></td>
<td>Comprehensive Medical Evaluation</td>
</tr>
<tr>
<td></td>
<td>Assessment of Comorbidities</td>
</tr>
<tr>
<td>S46</td>
<td>5. Lifestyle Management</td>
</tr>
<tr>
<td></td>
<td>Diabetes Self-management Education and Support</td>
</tr>
<tr>
<td></td>
<td>Nutrition Therapy</td>
</tr>
<tr>
<td></td>
<td>Physical Activity</td>
</tr>
<tr>
<td></td>
<td>Smoking Cessation: Tobacco and e-Cigarettes</td>
</tr>
<tr>
<td></td>
<td>Psychosocial Issues</td>
</tr>
<tr>
<td>S61</td>
<td>6. Glycemic Targets</td>
</tr>
<tr>
<td></td>
<td>Assessment of Glycemic Control</td>
</tr>
<tr>
<td></td>
<td>A1C Goals</td>
</tr>
<tr>
<td></td>
<td>Hypoglycemia</td>
</tr>
<tr>
<td></td>
<td>Intercurrent Illness</td>
</tr>
<tr>
<td>S71</td>
<td>7. Diabetes Technology</td>
</tr>
<tr>
<td></td>
<td>Insulin Delivery</td>
</tr>
<tr>
<td></td>
<td>Self-monitoring of Blood Glucose</td>
</tr>
<tr>
<td></td>
<td>Continuous Glucose Monitors</td>
</tr>
<tr>
<td></td>
<td>Automated Insulin Delivery</td>
</tr>
<tr>
<td>S81</td>
<td>8. Obesity Management for the Treatment of Type 2 Diabetes</td>
</tr>
<tr>
<td></td>
<td>Assessment</td>
</tr>
<tr>
<td></td>
<td>Diet, Physical Activity, and Behavioral Therapy</td>
</tr>
<tr>
<td></td>
<td>Pharmacotherapy</td>
</tr>
<tr>
<td></td>
<td>Medical Devices for Weight Loss</td>
</tr>
<tr>
<td></td>
<td>Metabolic Surgery</td>
</tr>
<tr>
<td>S90</td>
<td>9. Pharmacologic Approaches to Glycemic Treatment</td>
</tr>
<tr>
<td></td>
<td>Pharmacologic Therapy for Type 1 Diabetes</td>
</tr>
<tr>
<td></td>
<td>Surgical Treatment for Type 1 Diabetes</td>
</tr>
<tr>
<td></td>
<td>Pharmacologic Therapy for Type 2 Diabetes</td>
</tr>
<tr>
<td>S103</td>
<td>10. Cardiovascular Disease and Risk Management</td>
</tr>
<tr>
<td></td>
<td>Hypertension/Blood Pressure Control</td>
</tr>
<tr>
<td></td>
<td>Lipid Management</td>
</tr>
<tr>
<td></td>
<td>Antiplatelet Agents</td>
</tr>
<tr>
<td></td>
<td>Cardiovascular Disease</td>
</tr>
<tr>
<td>S124</td>
<td>11. Microvascular Complications and Foot Care</td>
</tr>
<tr>
<td></td>
<td>Chronic Kidney Disease</td>
</tr>
<tr>
<td></td>
<td>Diabetic Retinopathy</td>
</tr>
<tr>
<td></td>
<td>Neuropathy</td>
</tr>
<tr>
<td></td>
<td>Foot Care</td>
</tr>
<tr>
<td>S139</td>
<td>12. Older Adults</td>
</tr>
<tr>
<td></td>
<td>Neurocognitive Function</td>
</tr>
<tr>
<td></td>
<td>Hypoglycemia</td>
</tr>
<tr>
<td></td>
<td>Treatment Goals</td>
</tr>
<tr>
<td></td>
<td>Lifestyle Management</td>
</tr>
<tr>
<td></td>
<td>Pharmacologic Therapy</td>
</tr>
<tr>
<td></td>
<td>Treatment in Skilled Nursing Facilities and Nursing Homes</td>
</tr>
<tr>
<td></td>
<td>End-of-Life Care</td>
</tr>
<tr>
<td>S148</td>
<td>13. Children and Adolescents</td>
</tr>
<tr>
<td></td>
<td>Type 1 Diabetes</td>
</tr>
<tr>
<td></td>
<td>Type 2 Diabetes</td>
</tr>
<tr>
<td></td>
<td>Transition From Pediatric to Adult Care</td>
</tr>
<tr>
<td>S165</td>
<td>14. Management of Diabetes in Pregnancy</td>
</tr>
<tr>
<td></td>
<td>Diabetes in Pregnancy</td>
</tr>
<tr>
<td></td>
<td>Preconception Counseling</td>
</tr>
<tr>
<td></td>
<td>Glycemic Targets in Pregnancy</td>
</tr>
<tr>
<td></td>
<td>Management of Gestational Diabetes Mellitus</td>
</tr>
<tr>
<td></td>
<td>Management of Preexisting Type 1 Diabetes and Type 2 Diabetes in Pregnancy</td>
</tr>
<tr>
<td></td>
<td>Pregnancy and Drug Considerations</td>
</tr>
<tr>
<td></td>
<td>Postpartum Care</td>
</tr>
<tr>
<td>S173</td>
<td>15. Diabetes Care in the Hospital</td>
</tr>
<tr>
<td></td>
<td>Hospital Care Delivery Standards</td>
</tr>
<tr>
<td></td>
<td>Glycemic Targets in Hospitalized Patients</td>
</tr>
<tr>
<td></td>
<td>Bedside Blood Glucose Monitoring</td>
</tr>
<tr>
<td></td>
<td>Antihyperglycemic Agents in Hospitalized Patients</td>
</tr>
<tr>
<td></td>
<td>Hypoglycemia</td>
</tr>
<tr>
<td></td>
<td>Medical Nutrition Therapy in the Hospital</td>
</tr>
<tr>
<td></td>
<td>Self-management in the Hospital</td>
</tr>
<tr>
<td></td>
<td>Standards for Special Situations</td>
</tr>
<tr>
<td></td>
<td>Transition From the Acute Care Setting</td>
</tr>
<tr>
<td></td>
<td>Preventing Admissions and Readmissions</td>
</tr>
<tr>
<td>S182</td>
<td>16. Diabetes Advocacy</td>
</tr>
<tr>
<td></td>
<td>Advocacy Statements</td>
</tr>
<tr>
<td>S184</td>
<td>Disclosures</td>
</tr>
<tr>
<td>S187</td>
<td>Index</td>
</tr>
</tbody>
</table>

This issue is freely accessible online at care.diabetesjournals.org/content/42/Supplement_1.

Keep up with the latest information for Diabetes Care and other ADA titles via Facebook (@ADAJournals) and Twitter (@ADA_Journals).
Diabetes is a complex, chronic illness requiring continuous medical care with multifactorial risk-reduction strategies beyond glycemic control. Ongoing patient self-management education and support are critical to preventing acute complications and reducing the risk of long-term complications. Significant evidence exists that supports a range of interventions to improve diabetes outcomes.

The American Diabetes Association’s (ADA’s) “Standards of Medical Care in Diabetes,” referred to as the Standards of Care, is intended to provide clinicians, patients, researchers, payers, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care. The Standards of Care recommendations are not intended to preclude clinical judgment and must be applied in the context of excellent clinical care, with adjustments for individual preferences, comorbidities, and other patient factors. For more detailed information about management of diabetes, please refer to Medical Management of Type 1 Diabetes (1) and Medical Management of Type 2 Diabetes (2).

The recommendations include screening, diagnostic, and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. Many of these interventions have also been shown to be cost-effective (3).

The ADA strives to improve and update the Standards of Care to ensure that clinicians, health plans, and policy makers can continue to rely on them as the most authoritative and current guidelines for diabetes care. To improve access, the Standards of Care is now available through ADA’s new interactive app, along with tools and calculators that can help guide patient care. To download the app, please visit professional.diabetes.org/SOCapp. Readers who wish to comment on the 2019 Standards of Care are invited to do so at professional.diabetes.org/SOC.

ADA STANDARDS, STATEMENTS, REPORTS, and REVIEWS

The ADA has been actively involved in the development and dissemination of diabetes care standards, guidelines, and related documents for over 25 years. The ADA’s clinical practice recommendations are viewed as important resources for health care professionals who care for people with diabetes.

Standards of Care

This document is an official ADA position, is authored by the ADA, and provides all of the ADA’s current clinical practice recommendations.

To update the Standards of Care, the ADA’s Professional Practice Committee (PPC) performs an extensive clinical diabetes literature search, supplemented with input from ADA staff and the medical community at large. The PPC updates the Standards of Care annually. However, the Standards of Care is a “living” document, where notable updates are incorporated online should the PPC determine that new evidence or regulatory changes (e.g., drug approvals, label changes) merit immediate inclusion. More information on the “living Standards” can be found on DiabetesPro at professional.diabetes.org/content-page/living-standards. The Standards of Care supersedes all previous ADA position statements—and the recommendations therein—on clinical topics within the purview of the Standards of Care; ADA position statements, while still containing valuable analysis, should not be considered the ADA’s current position. The Standards of Care receives annual review and approval by the ADA Board of Directors.

ADA Statement

An ADA statement is an official ADA point of view or belief that does not contain clinical practice recommendations and may be issued on advocacy, policy, economic, or medical issues related to diabetes.

ADA statements undergo a formal review process, including a review by the appropriate national committee, ADA mission staff, and the ADA Board of Directors.

Consensus Report

A consensus report of a particular topic contains a comprehensive examination and is authored by an expert panel (i.e.,
GRADING OF SCIENTIFIC EVIDENCE

Since the ADA first began publishing practice guidelines, there has been considerable evolution in the evaluation of scientific evidence and in the development of evidence-based guidelines. In 2002, the ADA developed a classification system to grade the quality of scientific evidence supporting ADA recommendations. A 2015 analysis of the evidence cited in the Standards of Care found steady improvement in quality over the previous 10 years, with the 2014 Standards of Care for the first time having the majority of bulleted recommendations supported by A- or B-level evidence (4). A grading system (Table 1) developed by the ADA and modeled after existing methods was used to clarify and codify the evidence that forms the basis for the recommendations. ADA recommendations are assigned ratings of A, B, or C, depending on the quality of evidence. Expert opinion E is a separate category for recommendations in which there is no evidence from clinical trials, in which clinical trials may be impractical, or in which there is conflicting evidence. Recommendations with an A rating are based on large well-designed clinical trials or well-done meta-analyses. Generally, these recommendations have the best chance of improving outcomes when applied to the population to which they are appropriate. Recommendations with lower levels of evidence may be equally important but are not as well supported.

Of course, evidence is only one component of clinical decision making. Clinicians care for patients, not populations; guidelines must always be interpreted with the individual patient in mind. Individual circumstances, such as comorbid and coexisting diseases, age, education, disability, and, above all, patients’ values and preferences, must be considered and may lead to different treatment targets and strategies. Furthermore, conventional evidence hierarchies, such as the one adapted by the ADA, may miss nuances important in diabetes care. For example, although there is excellent evidence from clinical trials supporting the importance of achieving multiple risk factor control, the optimal way to achieve this result is less clear. It is difficult to assess each component of such a complex intervention.

References

The Professional Practice Committee (PPC) of the American Diabetes Association (ADA) is responsible for the “Standards of Medical Care in Diabetes,” referred to as the Standards of Care. The PPC is a multidisciplinary expert committee comprised of physicians, diabetes educators, and others who have expertise in a range of areas, including adult and pediatric endocrinology, epidemiology, public health, lipid research, hypertension, preconception planning, and pregnancy care. Appointment to the PPC is based on excellence in clinical practice and research. Although the primary role of the PPC is to review and update the Standards of Care, it may also be involved in ADA statements, reports, and reviews.

The ADA adheres to the National Academy of Medicine Standards for Developing Trustworthy Clinical Practice Guidelines. All members of the PPC are required to disclose potential conflicts of interest with industry and/or other relevant organizations. These disclosures are discussed at the onset of each Standards of Care revision meeting. Members of the committee, their employers, and their disclosed conflicts of interest are listed in the “Disclosures: Standards of Medical Care in Diabetes—2019” table (see pp. S184–S186). The ADA funds development of the Standards of Care out of its general revenues and does not use industry support for this purpose.

For the current revision, PPC members systematically searched MEDLINE for human studies related to each section and published since 15 October 2017. Recommendations were revised based on new evidence or, in some cases, to clarify the prior recommendation or match the strength of the wording to the strength of the evidence. A table linking the changes in recommendations to new evidence can be reviewed at professional.diabetes.org/SOC. The Standards of Care was approved by ADA’s Board of Directors, which includes health care professionals, scientists, and lay people.

Feedback from the larger clinical community was valuable for the 2018 revision of the Standards of Care. Readers who wish to comment on the 2019 Standards of Care are invited to do so at professional.diabetes.org/SOC.

The PPC would like to thank the following individuals who provided their expertise in reviewing and/or consulting with the committee:

- Ann Albright, PhD, RD
- Pamela Allweiss, MD, MPH
- Barbara J. Anderson, PhD
- George Bakris, MD
- Richard Bergenstal, MD
- Stuart Brink, MD
- Donald R. Coustan, MD
- Ellen D. Davis, MS, RN, CDE, FAADE
- Jesse Dinh, PharmD
- Steven Edelman, MD
- Barry H. Ginsberg, MD, PhD
- Irl B. Hirsch, MD
- Scott Kahan, MD, MPH
- David Klonoff, MD
- Jennifer Little, PhD
- Alexandra Migdal, MD
- Anne Peters, MD
- Amy Rothberg, MD
- Jennifer Sherr, MD, PhD
- Hoard Thabit, MB, BCh, MD, PhD
- Stuart Alan Weinzimer, MD
- Neil White, MD

Members of the PPC

- Joshua J. Neumiller, PharmD, CDE, FASCP* (Chair)
- Christopher P. Cannon, MD
- Jill Crandall, MD
- David D’Alessio, MD
- Ian H. de Boer, MD, MS*
- Mary de Groot, PhD
- Judith Fradkin, MD
- Kathryn Evans Kreider, DNP, APRN, FNP-BC, BC-ADM
- David Maahs, MD, PhD
- Nisa Maruthur, MD, MHS
- Medha N. Munshi, MD*
- Maria Jose Redondo, MD, PhD, MPH
- Guillermo E. Umpierrez, MD, CDE, FACE, FACP*
- Jennifer Wyckoff, MD

*Subgroup leaders

ADA Nutrition Consensus Report Writing Group—Liaison

Melinda Maryniuk, MEd, RDN, CDE

American College of Cardiology—Designated Representatives (Section 10)

Sandeep Das, MD, MPH, FACC
Mikhail Kosiborod, MD, FACC

ADA Staff

Erika Gebel Berg, PhD
(corresponding author: eberg@diabetes.org)

Mindy Saraco, MHA
Matthew P. Petersen
Sacha Uelman, RDN, CDE
Shamera Robinson, MPH, RDN
William T. Cefalu, MD

© 2018 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.
Summary of Revisions: Standards of Medical Care in Diabetes—2019

Diabetes Care 2019;42(Suppl. 1):S4–S6 | https://doi.org/10.2337/dc19-srev01

GENERAL CHANGES
The field of diabetes care is rapidly changing as new research, technology, and treatments that can improve the health and well-being of people with diabetes continue to emerge. With annual updates since 1989, the American Diabetes Association (ADA) has long been a leader in producing guidelines that capture the most current state of the field. To that end, the “Standards of Medical Care in Diabetes” (Standards of Care) now includes a dedicated section on Diabetes Technology, which contains preexisting material that was previously in other sections that has been consolidated, as well as new recommendations. Another general change is that each recommendation is now associated with a number (i.e., the second recommendation in Section 7 is now recommendation 7.2).

Finally, the order of the prevention section was changed (from Section 5 to Section 3) to follow a more logical progression.

Although levels of evidence for several recommendations have been updated, these changes are not addressed below as the clinical recommendations have remained the same. Changes in evidence level from, for example, E to C are not noted below. The 2019 Standards of Care contains, in addition to many minor changes that clarify recommendations or reflect new evidence, the following more substantive revisions.

SECTION CHANGES
Section 1. Improving Care and Promoting Health in Populations
Additional information was included on the financial costs of diabetes to individuals and society.

Because telemedicine is a growing field that may increase access to care for patients with diabetes, discussion was added on its use to facilitate remote delivery of health-related services and clinical information.

Section 2. Classification and Diagnosis of Diabetes
Based on new data, the criteria for the diagnosis of diabetes was changed to include two abnormal test results from the same sample (i.e., fasting plasma glucose and A1C from same sample).

The section was reorganized to improve flow and reduce redundancy.

Additional conditions were identified that may affect A1C test accuracy including the postpartum period.

Section 3. Prevention or Delay of Type 2 Diabetes
This section was moved (previously it was Section 5) and is now located before the Lifestyle Management section to better reflect the progression of type 2 diabetes.

The nutrition section was updated to highlight the importance of weight loss for those at high risk for developing type 2 diabetes who have overweight or obesity.

Because smoking may increase the risk of type 2 diabetes, a section on tobacco use and cessation was added.

Section 4. Comprehensive Medical Evaluation and Assessment of Comorbidities
On the basis of a new consensus report on diabetes and language, new text was added to guide health care professionals’ use of language to communicate about diabetes with people with diabetes and professional audiences in an informative, empowering, and educational style.

A new figure from the ADA-European Association for the Study of Diabetes (EASD) consensus report about the diabetes care decision cycle was added to emphasize the need for ongoing assessment and shared decision making to achieve the goals of health care and avoid clinical inertia.

A new recommendation was added to explicitly call out the importance of the diabetes care team and to list the professionals that make up the team.

The table listing the components of a comprehensive medical evaluation was revised, and the section on assessment and planning was used to create a new table (Table 4.2).

A new table was added listing factors that increase risk of treatment-associated hypoglycemia (Table 4.3).

A recommendation was added to include the 10-year atherosclerotic cardiovascular disease (ASCVD) risk as part of overall risk assessment.

The fatty liver disease section was revised to include updated text and a new recommendation regarding when to test for liver disease.

Section 5. Lifestyle Management
Evidence continues to suggest that there is not an ideal percentage of calories from carbohydrate, protein, and fat for all people with diabetes. Therefore, more discussion was added about the importance of macronutrient distribution based on an individualized assessment of current eating patterns, preferences, and metabolic goals. Additional considerations were added to the eating...
patterns, macronutrient distribution, and meal planning sections to better identify candidates for meal plans, specifically for low-carbohydrate eating patterns and people who are pregnant or lactating, who have or are at risk for disordered eating, who have renal disease, and who are taking sodium–glucose co-transporter 2 inhibitors. There is not a one-size-fits-all eating pattern for individuals with diabetes, and meal planning should be individualized.

A recommendation was modified to encourage people with diabetes to decrease consumption of both sugar sweetened and nonnutritive-sweetened beverages and use other alternatives, with an emphasis on water intake.

The sodium consumption recommendation was modified to eliminate the further restriction that was potentially indicated for those with both diabetes and hypertension.

Additional discussion was added to the physical activity section to include the benefit of a variety of leisure-time physical activities and flexibility and balance exercises.

The discussion about e-cigarettes was expanded to include more on public perception and how their use to aide smoking cessation was not more effective than “usual care.”

Section 6. Glycemic Targets
This section now begins with a discussion of A1C tests to highlight the centrality of A1C testing in glycemic management.

The self-monitoring of blood glucose and continuous glucose monitoring text and recommendations were moved to the new Diabetes Technology section.

To emphasize that the risks and benefits of glycemic targets can change as diabetes progresses and patients age, a recommendation was added to reevaluate glycemic targets over time.

The section was modified to align with the living Standards updates made in April 2018 regarding the consensus definition of hypoglycemia.

Section 7. Diabetes Technology
This new section includes new recommendations, the self-monitoring of blood glucose section formerly included in Section 6 “Glycemic Targets,” and a discussion of insulin delivery devices (syringes, pens, and insulin pumps), blood glucose meters, continuous glucose monitors (real-time and intermittently scanned (“flash”)), and automated insulin delivery devices.

The recommendation to use self-monitoring of blood glucose in people who are not using insulin was changed to acknowledge that routine glucose monitoring is of limited additional clinical benefit in this population.

Section 8. Obesity Management for the Treatment of Type 2 Diabetes
A recommendation was modified to acknowledge the benefits of tracking weight, activity, etc., in the context of achieving and maintaining a healthy weight.

A brief section was added on medical devices for weight loss, which are not currently recommended due to limited data in people with diabetes.

The recommendations for metabolic surgery were modified to align with recent guidelines, citing the importance of considering comorbidities beyond diabetes when contemplating the appropriateness of metabolic surgery for a given patient.

Section 9. Pharmacologic Approaches to Glycemic Treatment
The section on the pharmacologic treatment of type 2 diabetes was significantly changed to align, as per the living Standards update in October 2018, with the ADA-EASD consensus report on this topic, summarized in the new Figs. 9.1 and 9.2. This includes consideration of key patient factors: a) important comorbidities such as ASCVD, chronic kidney disease, and heart failure, b) hypoglycemia risk, c) effects on body weight, d) side effects, e) costs, and f) patient preferences.

To align with the ADA-EASD consensus report, the approach to injectable medication therapy was revised (Fig. 9.2). A recommendation that, for most patients who need the greater efficacy of an injectable medication, a glucagon-like peptide 1 receptor agonist should be the first choice, ahead of insulin.

A new section was added on insulin injection technique, emphasizing the importance of technique for appropriate insulin dosing and the avoidance of complications (lipodystrophy, etc.).

The section on noninsulin pharmacologic treatments for type 1 diabetes was abbreviated, as these are not generally recommended.

Section 10. Cardiovascular Disease and Risk Management
For the first time, this section is endorsed by the American College of Cardiology. Additional text was added to acknowledge heart failure as an important type of cardiovascular disease in people with diabetes for consideration when determining optimal diabetes care.

The blood pressure recommendations were modified to emphasize the importance of individualization of targets based on cardiovascular risk.

A discussion of the appropriate use of the ASCVD risk calculator was included, and recommendations were modified to include assessment of 10-year ASCVD risk as part of overall risk assessment and in determining optimal treatment approaches.

The recommendation and text regarding the use of aspirin in primary prevention was updated with new data.

For alignment with the ADA-EASD consensus report, two recommendations were added for the use of medications that have proven cardiovascular benefit in people with ASCVD, with and without heart failure.

Section 11. Microvascular Complications and Foot Care
To align with the ADA-EASD consensus report, a recommendation was added for people with type 2 diabetes and chronic kidney disease to consider agents with proven benefit with regard to renal outcomes.

The recommendation on the use of telemedicine in retinal screening was modified to acknowledge the utility of this approach, so long as appropriate referrals are made for a comprehensive eye examination.

Gabapentin was added to the list of agents to be considered for the treatment of neuropathic pain in people with diabetes based on data on efficacy and the potential for cost savings.

The gastroparesis section includes a discussion of a few additional treatment modalities.

The recommendation for patients with diabetes to have their feet inspected at every visit was modified to only include those at high risk for ulceration. Annual
examinations remain recommended for everyone.

Section 12. Older Adults

A new section and recommendation on lifestyle management was added to address the unique nutritional and physical activity needs and considerations for older adults.

Within the pharmacologic therapy discussion, deintensification of insulin regimens was introduced to help simplify insulin regimen to match individual’s self-management abilities. A new figure was added (Fig. 12.1) that provides a path for simplification. A new table was also added (Table 12.2) to help guide providers considering medication regimen simplification and deintensification/deprescribing in older adults with diabetes.

Section 13. Children and Adolescents

Introductory language was added to the beginning of this section reminding the reader that the epidemiology, pathophysiology, developmental considerations, and response to therapy in pediatric-onset diabetes are different from adult diabetes, and that there are also differences in recommended care for children and adolescents with type 1 as opposed to type 2 diabetes.

A recommendation was added to emphasize the need for disordered eating screening in youth with type 1 diabetes beginning at 10–12 years of age.

Based on new evidence, a recommendation was added discouraging e-cigarette use in youth.

The discussion of type 2 diabetes in children and adolescents was significantly expanded, with new recommendations in a number of areas, including screening and diagnosis, lifestyle management, pharmacologic management, and transition of care to adult providers. New sections and/or recommendations for type 2 diabetes in children and adolescents were added for glycemic targets, metabolic surgery, nephropathy, retinopathy, nonalcoholic fatty liver disease, obstructive sleep apnea, polycystic ovary syndrome, cardiovascular disease, dyslipidemia, cardiac function testing, and psychosocial factors. Figure 13.1 was added to provide guidance on the management of diabetes in overweight youth.

Section 14. Management of Diabetes in Pregnancy

Women with preexisting diabetes are now recommended to have their care managed in a multidisciplinary clinic to improve diabetes and pregnancy outcomes.

Greater emphasis has been placed on the use of insulin as the preferred medication for treating hyperglycemia in gestational diabetes mellitus as it does not cross the placenta to a measurable extent and how metformin and glyburide should not be used as first-line agents as both cross the placenta to the fetus.

Section 15. Diabetes Care in the Hospital

Because of their ability to improve hospital readmission rates and cost of care, a new recommendation was added calling for providers to consider consulting with a specialized diabetes or glucose management team where possible when caring for hospitalized patients with diabetes.

Section 16. Diabetes Advocacy

The "Insulin Access and Affordability Working Group: Conclusions and Recommendations" ADA statement was added to this section. Published in 2018, this statement compiled public information and convened a series of meetings with stakeholders throughout the insulin supply chain to learn how each entity affects the cost of insulin for the consumer, an important topic for the ADA and people living with diabetes.
1. Improving Care and Promoting Health in Populations: Standards of Medical Care in Diabetes—2019

Diabetes Care 2019;42(Suppl. 1):S7–S12 | https://doi.org/10.2337/dc19-S001

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

DIABETES AND POPULATION HEALTH

Recommendations

1.1 Ensure treatment decisions are timely, rely on evidence-based guidelines, and are made collaboratively with patients based on individual preferences, prognoses, and comorbidities. B

1.2 Align approaches to diabetes management with the Chronic Care Model, emphasizing productive interactions between a prepared proactive care team and an informed activated patient. A

1.3 Care systems should facilitate team-based care, patient registries, decision support tools, and community involvement to meet patient needs. B

1.4 Efforts to assess the quality of diabetes care and create quality improvement strategies should incorporate reliable data metrics, to promote improved processes of care and health outcomes, with simultaneous emphasis on costs. E

Population health is defined as “the health outcomes of a group of individuals, including the distribution of health outcomes within the group”; these outcomes can be measured in terms of health outcomes (mortality, morbidity, health, and functional status), disease burden (incidence and prevalence), and behavioral and metabolic factors (exercise, diet, A1C, etc.) (1). Clinical practice recommendations for health care providers are tools that can ultimately improve health across populations; however, for optimal outcomes, diabetes care must also be individualized for each patient. Thus, efforts to improve population health will require a combination of system-level and patient-level approaches. With such an integrated approach in mind, the American Diabetes Association (ADA) highlights the importance of patient-centered care, defined as care that is respectful of and responsive to individual patient preferences, needs, and values and that ensures that patient values guide all clinical decisions (2). Clinical practice recommendations, whether based on evidence or expert opinion, are

© 2018 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.
intended to guide an overall approach to care. The science and art of medicine come together when the clinician is faced with making treatment recommendations for a patient who may not meet the eligibility criteria used in the studies on which guidelines are based. Recognizing that one size does not fit all, the standards presented here provide guidance for when and how to adapt recommendations for an individual.

Care Delivery Systems

The proportion of patients with diabetes who achieve recommended A1C, blood pressure, and LDL cholesterol levels has increased in recent years (3). The mean A1C nationally among people with diabetes declined from 7.6% (60 mmol/mol) in 1999–2002 to 7.2% (55 mmol/mol) in 2007–2010 based on the National Health and Nutrition Examination Survey (NHANES), with younger adults less likely to meet treatment targets than older adults (3). This has been accompanied by improvements in cardiovascular outcomes and has led to substantial reductions in end-stage microvascular complications.

Nevertheless, 33–49% of patients still did not meet general targets for glycemic, blood pressure, or cholesterol control, and only 14% met targets for all three measures while also avoiding smoking (3). Evidence suggests that progress in cardiovascular risk factor control (particularly tobacco use) may be slowing (3,4). Certain segments of the population, such as young adults and patients with complex comorbidities, financial or other social hardships, and/or limited English proficiency, face particular challenges to goal-based care (5–7). Even after adjusting for these patient factors, the persistent variability in the quality of diabetes care across providers and practice settings indicates that substantial system-level improvements are still needed.

Diabetes poses a significant financial burden to individuals and society. It is estimated that the annual cost of diagnosed diabetes in 2017 was $327 billion, including $237 billion in direct medical costs and $90 billion in reduced productivity. After adjusting for inflation, economic costs of diabetes increased by 26% from 2012 to 2017 (8). This is attributed to the increased prevalence of diabetes and the increased cost per person with diabetes. Ongoing population health strategies are needed in order to reduce costs and provide optimized care.

Chronic Care Model

Numerous interventions to improve adherence to the recommended standards have been implemented. However, a major barrier to optimal care is a delivery system that is often fragmented, lacks clinical information capabilities, duplicates services, and is poorly designed for the coordinated delivery of chronic care. The Chronic Care Model (CCM) takes these factors into consideration and is an effective framework for improving the quality of diabetes care (9).

Six Core Elements. The CCM includes six core elements to optimize the care of patients with chronic disease:

1. **Delivery system design** (moving from a reactive to a proactive care delivery system where planned visits are coordinated through a team-based approach)
2. **Self-management support**
3. **Decision support** (basing care on evidence-based, effective care guidelines)
4. **Clinical information systems** (using registries that can provide patient-specific and population-based support to the care team)
5. **Community resources and policies** (identifying or developing resources to support healthy lifestyles)
6. **Health systems** (to create a quality-oriented culture)

Redefining the roles of the health care delivery team and empowering patient self-management are fundamental to the successful implementation of the CCM (10). Collaborative, multidisciplinary teams are best suited to provide care for people with chronic conditions such as diabetes and to facilitate patients’ self-management (11–13).

Strategies for System-Level Improvement

Optimal diabetes management requires an organized, systematic approach and the involvement of a coordinated team of dedicated health care professionals working in an environment where patient-centered high-quality care is a priority (7,14,15). While many diabetes processes of care have improved nationally in the past decade, the overall quality of care for patients with diabetes remains suboptimal (3). Efforts to increase the quality of diabetes care include providing care that is concordant with evidence-based guidelines (16); expanding the role of teams to implement more intensive disease management strategies (7,17,18); tracking medication-taking behavior at a systems level (19); redesigning the organization of the care process (20); implementing electronic health record tools (21,22); empowering and educating patients (23,24); removing financial barriers and reducing patient out-of-pocket costs for diabetes education, eye exams, diabetes technology, and necessary medications (7); assessing and addressing psychosocial issues (25,26); and identifying, developing, and engaging community resources and public policies that support healthy lifestyles (27). The National Diabetes Education Program maintains an online resource (www.betterdiabetescare.nih.gov) to help health care professionals design and implement more effective health care delivery systems for those with diabetes.

The care team, which centers around the patient, should avoid therapeutic inertia and prioritize timely and appropriate intensification of lifestyle and/or pharmacologic therapy for patients who have not achieved the recommended metabolic targets (28–30). Strategies shown to improve care team behavior and thereby catalyze reductions in A1C, blood pressure, and/or LDL cholesterol include engaging in explicit and collaborative goal setting with patients (31,32); identifying and addressing language, numeracy, or cultural barriers to care (33–35); integrating evidence-based guidelines and clinical information tools into the process of care (16,36,37); soliciting performance feedback, setting reminders, and providing structured care (e.g., guidelines, formal case management, and patient education resources) (7); and incorporating care management teams including nurses, dietitians, pharmacists, and other providers (17,38). Initiatives such as the Patient-Centered Medical Home show promise for improving health outcomes by fostering comprehensive primary care and offering new opportunities for team-based chronic disease management (39).

Telemedicine is a growing field that may increase access to care for patients with diabetes. Telemedicine is defined as the use of telecommunications to
facilitate remote delivery of health-related services and clinical information (40). A growing body of evidence suggests that various telemedicine modalities may be effective at reducing A1C in patients with type 2 diabetes compared with usual care or in addition to usual care (41). For rural populations or those with limited physical access to health care, telemedicine has a growing body of evidence for its effectiveness, particularly with regard to glycemic control as measured by A1C (42–44). Interactive strategies that facilitate communication between providers and patients, including the use of web-based portals or text messaging and those that incorporate medication adjustment, appear more effective. There is limited data available on the cost-effectiveness of these strategies.

Successful diabetes care also requires a systematic approach to supporting patients’ behavior change efforts. High-quality diabetes self-management education and support (DSMES) has been shown to improve patient self-management, satisfaction, and glucose outcomes. National DSMES standards call for an integrated approach that includes clinical content and skills, behavioral strategies (goal setting, problem solving), and engagement with psychosocial concerns (26). For more information on DSMES, see Section 5 “Lifestyle Management.”

In devising approaches to support disease self-management, it is notable that in 23% of cases, uncontrolled A1C, blood pressure, or lipids were associated with poor medication-taking behaviors (“medication adherence”) (19). At a system level, “adequate” medication taking is defined as 80% (calculated as the number of pills taken by the patient in a given time period divided by the number of pills prescribed by the physician in that same time period) (19). If medication taking is 80% or above and treatment goals are not met, then treatment intensification should be considered (e.g., uptitrating). Barriers to medication taking may include patient factors (financial limitations, remembering to obtain or take medications, fear, depression, or health beliefs), medication factors (complexity, multiple daily dosing, cost, or side effects), and system factors (inadequate follow-up or support). Success in overcoming barriers to medication taking may be achieved if the patient and provider agree on a targeted approach for a specific barrier (12).

The Affordable Care Act has resulted in increased access to care for many individuals with diabetes with an emphasis on the protection of people with preexisting conditions, health promotion, and disease prevention (45). In fact, health insurance coverage increased from 84.7% in 2009 to 90.1% in 2016 for adults with diabetes aged 18–64 years. Coverage for those 65 years remained near universal (46). Patients who have either private or public insurance coverage are more likely to meet quality indicators for diabetes care (47). As mandated by the Affordable Care Act, the Agency for Healthcare Research and Quality developed a National Quality Strategy based on the triple aims that include improving the health of a population, overall quality and patient experience of care, and per capita cost (48,49).

As health care systems and practices adapt to the changing landscape of health care, it will be important to integrate traditional disease-specific metrics with measures of patient experience, as well as cost, in assessing the quality of diabetes care (50,51). Information and guidance specific to quality improvement and practice transformation for diabetes care is available from the National Diabetes Education Program practice transformation website and the National Institute of Diabetes and Digestive and Kidney Diseases report on diabetes care and quality (52,53). Using patient registries and electronic health records, health systems can evaluate the quality of diabetes care being delivered and perform intervention cycles as part of quality improvement strategies (54). Critical to these efforts is provider adherence to clinical practice recommendations and accurate, reliable data metrics that include sociodemographic variables to examine health equity within and across populations (55).

In addition to quality improvement efforts, other strategies that simultaneously improve the quality of care and potentially reduce costs are gaining momentum and include reimbursement structures that, in contrast to visit-based billing, reward the provision of appropriate and high-quality care to achieve metabolic goals (56) and incentives that accommodate personalized care goals (7,57).

TAILORING TREATMENT FOR SOCIAL CONTEXT

Recommendations

1.5 Providers should assess social context, including potential food insecurity, housing stability, and financial barriers, and apply that information to treatment decisions. A

1.6 Refer patients to local community resources when available. B

1.7 Provide patients with self-management support from lay health coaches, navigators, or community health workers when available. A

Health inequities related to diabetes and its complications are well documented and are heavily influenced by social determinants of health (58–62). Social determinants of health are defined as the economic, environmental, political, and social conditions in which people live and are responsible for a major part of health inequality worldwide (63). The ADA recognizes the association between social and environmental factors and the prevention and treatment of diabetes and has issued a call for research that seeks to better understand how these social determinants influence behaviors and how the relationships between these variables might be modified for the prevention and management of diabetes (64). While a comprehensive strategy to reduce diabetes-related health inequities in populations has not been formally studied, general recommendations from other chronic disease models can be drawn upon to inform systems-level strategies in diabetes. For example, the National Academy of Medicine has published a framework for educating health care professionals on the importance of social determinants of health (65). Furthermore, there are resources available for the inclusion of standardized sociodemographic variables in electronic medical records to facilitate the measurement of health inequities as well as the impact of interventions designed to reduce those inequities (66–68).

Social determinants of health are not always recognized and often go undiscussed in the clinical encounter (61). A
study by Piette et al. (69) found that among patients with chronic illnesses, two-thirds of those who reported not taking medications as prescribed due to cost never shared this with their physician. In a more recent study using data from the National Health Interview Survey (NHIS), Patel et al. (61) found that half of adults with diabetes reported financial stress and one-fifth reported food insecurity (FI). One population in which such issues must be considered is older adults, where social difficulties may impair their quality of life and increase their risk of functional dependency (70) (see Section 12 "Older Adults" for a detailed discussion of social considerations in older adults). Creating systems-level mechanisms to screen for social determinants of health may help overcome structural barriers and communication gaps between patients and providers (61). In addition, brief, validated screening tools for some social determinants of health exist and could facilitate discussion around factors that significantly impact treatment during the clinical encounter. Below is a discussion of assessment and treatment considerations in the context of FI, homelessness, and limited English proficiency/low literacy.

Food Insecurity

FI is the unreliable availability of nutritious food and the inability to consistently obtain food without resorting to socially unacceptable practices. Over 14% (or one of every seven people) of the U.S. population is food insecure. The rate is higher in some racial/ethnic minority groups, including African American and Latino populations, in low-income households, and in homes headed by a single mother. The risk for type 2 diabetes is increased twofold in those with FI (64) and has been associated with low adherence to taking medications appropriately and recommended self-care behaviors, depression, diabetes distress, and worse glycemic control when compared with individuals who are food secure (71,72). Risk for FI can be assessed with a validated two-item screening tool (73) that includes the statements: 1) "Within the past 12 months we worried whether our food would run out before we got money to buy more." An affirmative response to either statement had a sensitivity of 97% and specificity of 83%.

Treatment Considerations

In those with diabetes and FI, the priority is mitigating the increased risk for uncontrolled hyperglycemia and severe hypoglycemia. Reasons for the increased risk of hyperglycemia include the steady consumption of inexpensive carbohydrate-rich processed foods, binge eating, financial constraints to the filling of diabetes medication prescriptions, and anxiety/depression leading to poor diabetes self-care behaviors. Hypoglycemia can occur as a result of inadequate or erratic carbohydrate consumption following the administration of sulfonylureas or insulin. See Table 9.1 for drug-specific and patient factors, including cost and risk of hypoglycemia, for treatment options for adults with FI and type 2 diabetes. Providers should consider these factors when making treatment decisions in people with FI and seek local resources that might help patients with diabetes and their family members to more regularly obtain nutritious food (74).

Homelessness

Homelessness often accompanies many additional barriers to diabetes self-management, including FI, literacy and numeracy deficiencies, lack of insurance, cognitive dysfunction, and mental health issues. Additionally, patients with diabetes who are homeless need secure places to keep their diabetes supplies and refrigerator access to properly store their insulin and take it on a regular schedule. Risk for homelessness can be ascertained using a brief risk assessment tool developed and validated for use among veterans (75). Given the potential challenges, providers who care for homeless individuals should be familiar with resources or have access to social workers that can facilitate temporary housing for their patients as a way to improve diabetes care.

Language Barriers

Providers who care for non-English speakers should develop or offer educational programs and materials in multiple languages with the specific goals of preventing diabetes and building diabetes awareness in people who cannot easily read or write in English. The National Standards for Culturally and Linguistically Appropriate Services in Health and Health Care provide guidance on how health care providers can reduce language barriers by improving their cultural competency, addressing health literacy, and ensuring communication with language assistance (76). The site offers a number of resources and materials that can be used to improve the quality of care delivery to non-English-speaking patients.

Community Support

Identification or development of community resources to support healthy lifestyles is a core element of the CCM (9). Health care community linkages are receiving increasing attention from the American Medical Association, the Agency for Healthcare Research and Quality, and others as a means of promoting translation of clinical recommendations for lifestyle modification in real-world settings (77). Community health workers (CHWs) (78), peer supporters (79–81), and lay leaders (82) may assist in the delivery of DSMES services (66), particularly in underserved communities. A CHW is defined by the American Public Health Association as a "frontline public health worker who is a trusted member of and/or has an unusually close understanding of the community served" (83). CHWs can be part of a cost-effective, evidence-based strategy to improve the management of diabetes and cardiovascular risk factors in underserved communities and health care systems (84).

References

17. Jaffe MG, Lee GA, Young JD, Sidney S, Go AS. Improved blood pressure control associated with a large-scale hypertension program. JAMA 2013;310:699–705

69. Piette JD, Heisler M, Wagner TH. Cost-related medication underuse among chronically ill adults: the treatments people forgo, how often, and who is at risk. Am J Public Health 2004;94:1782–1787

2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2019

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

CLASSIFICATION

Diabetes can be classified into the following general categories:

1. Type 1 diabetes (due to autoimmune β-cell destruction, usually leading to absolute insulin deficiency)
2. Type 2 diabetes (due to a progressive loss of β-cell insulin secretion frequently on the background of insulin resistance)
3. Gestational diabetes mellitus (GDM) (diabetes diagnosed in the second or third trimester of pregnancy that was not clearly overt diabetes prior to gestation)
4. Specific types of diabetes due to other causes, e.g., monogenic diabetes syndromes (such as neonatal diabetes and maturity-onset diabetes of the young [MODY]), diseases of the exocrine pancreas (such as cystic fibrosis and pancreatitis), and drug- or chemical-induced diabetes (such as with glucocorticoid use, in the treatment of HIV/AIDS, or after organ transplantation)

This section reviews most common forms of diabetes but is not comprehensive. For additional information, see the American Diabetes Association (ADA) position statement “Diagnosis and Classification of Diabetes Mellitus” (1).

Type 1 diabetes and type 2 diabetes are heterogeneous diseases in which clinical presentation and disease progression may vary considerably. Classification is important for determining therapy, but some individuals cannot be clearly classified as having type 1 or type 2 diabetes at the time of diagnosis. The traditional paradigms of type 2 diabetes occurring only in adults and type 1 diabetes only in children are no longer accurate, as both diseases occur in both age-groups. Children with type 1 diabetes typically present with the hallmark symptoms of polyuria/polydipsia, and approximately one-third present with diabetic ketoacidosis (DKA) (2). The onset of type 1 diabetes may be more variable in adults, and they may not present with the
classic symptoms seen in children. Occasionally, patients with type 2 diabetes may present with DKA, particularly ethnic minorities (3). Although difficulties in distinguishing diabetes type may occur in all age-groups at onset, the true diagnosis becomes more obvious over time.

In both type 1 and type 2 diabetes, various genetic and environmental factors can result in the progressive loss of β-cell mass and/or function that manifests clinically as hyperglycemia. Once hyperglycemia occurs, patients with all forms of diabetes are at risk for developing the same chronic complications, although rates of progression may differ. The identification of individualized therapies for diabetes in the future will require better characterization of the many paths to β-cell demise or dysfunction (4).

Characterization of the underlying pathophysiology is more developed in type 1 diabetes than in type 2 diabetes. It is now clear from studies of first-degree relatives of patients with type 1 diabetes that the persistent presence of two or more autoantibodies is an almost certain predictor of clinical hyperglycemia and diabetes. The rate of progression is dependent on the age at first detection of antibody, number of antibodies, antibody specificity, and antibody titer. Glucose and A1C levels rise well before the clinical onset of diabetes, making diagnosis feasible well before the onset of DKA. Three distinct stages of type 1 diabetes can be identified (Table 2.1) and serve as a framework for future research and regulatory decision making (4,5).

The paths to β-cell demise and dysfunction are less well defined in type 2 diabetes, but deficient β-cell insulin secretion, frequently in the setting of insulin resistance, appears to be the common denominator. Characterization of subtypes of this heterogeneous disorder have been developed and validated in Scandinavian and Northern European populations but have not been confirmed in other ethnic and racial groups. Type 2 diabetes is primarily associated with insulin secretory defects related to inflammation and metabolic stress among other contributors, including genetic factors. Future classification schemes for diabetes will likely focus on the pathophysiology of the underlying β-cell dysfunction and the stage of disease as indicated by glucose status (normal, impaired, or diabetes) (4).

Diagnostic Tests for Diabetes

Diabetes may be diagnosed based on plasma glucose criteria, either the fasting plasma glucose (FPG) value or the 2-h plasma glucose (2-h PG) value during a 75-g oral glucose tolerance test (OGTT), or A1C criteria (6) (Table 2.2).

Generally, FPG, 2-h PG during 75-g OGTT, and A1C are equally appropriate for diagnostic testing. It should be noted that the tests do not necessarily detect diabetes in the same individuals. The efficacy of interventions for primary prevention of type 2 diabetes (7,8) has primarily been demonstrated among individuals who have impaired glucose tolerance (IGT) with or without elevated fasting glucose, not for individuals with isolated impaired fasting glucose (IFG) or for those with prediabetes defined by A1C criteria.

The same tests may be used to screen for, diagnose diabetes, and to detect individuals with prediabetes. Diabetes may be identified anywhere along the spectrum of clinical scenarios: in seemingly low-risk individuals who happen to have glucose testing, in individuals tested based on diabetes risk assessment, and in symptomatic patients.

Fasting and 2-Hour Plasma Glucose

The FPG and 2-h PG may be used to diagnose diabetes (Table 2.2). The concordance between the FPG and 2-h PG tests is imperfect, as is the concordance between A1C and either glucose-based test. Compared with FPG and A1C cut points, the 2-h PG value diagnoses more people with prediabetes and diabetes (9).

A1C

Recommendations

2.1 To avoid misdiagnosis or missed diagnosis, the A1C test should be performed using a method that is certified by the NGSP and standardized to the Diabetes Control and Complications Trial (DCCT) assay. B

2.2 Marked discordance between measured A1C and plasma glucose levels should raise the possibility of A1C assay interference due to hemoglobin variants (i.e., hemoglobinopathies) and consideration of using an assay without interference or plasma blood glucose criteria to diagnose diabetes. B

2.3 In conditions associated with an altered relationship between A1C and glycaemia, such as sickle cell disease, pregnancy (second and third trimesters and the postpartum period), glucose-6-phosphate dehydrogenase deficiency, HIV, hemodialysis, recent blood loss or transfusion, or erythropoietin therapy, only plasma blood glucose criteria should be used to diagnose diabetes. B

The A1C test should be performed using a method that is certified by the NGSP (www.ngsp.org) and standardized or traceable to the Diabetes Control and

Table 2.1—Staging of type 1 diabetes (4,5)

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
<td>Autoimmunity</td>
<td>Autoimmunity</td>
</tr>
<tr>
<td></td>
<td>Normoglycemia</td>
<td>Dysglycemia</td>
</tr>
<tr>
<td></td>
<td>Presymptomatic</td>
<td>Presymptomatic</td>
</tr>
<tr>
<td>Diagnostic criteria</td>
<td>Multiple autoantibodies</td>
<td>Multiple autoantibodies</td>
</tr>
<tr>
<td></td>
<td>No IGT or IFG</td>
<td>Dysglycemia: IFG and/or IGT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FPG 100–125 mg/dL (5.6–6.9 mmol/L)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-h PG 140–199 mg/dL (7.8–11.0 mmol/L)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1C 5.7–6.4% (39–47 mmol/mol) or ≥10% increase in A1C</td>
</tr>
</tbody>
</table>
Table 2.2—Criteria for the diagnosis of diabetes

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasting plasma glucose</td>
<td>FPG ≥126 mg/dL (7.0 mmol/L). Fasting is defined as no caloric intake for at least 8 h.*</td>
</tr>
<tr>
<td>2-h PG</td>
<td>OR 2-h PG ≥200 mg/dL (11.1 mmol/L) during OGTT. The test should be performed as described by the WHO, using a glucose load containing the equivalent of 75-g anhydrous glucose dissolved in water.*</td>
</tr>
<tr>
<td>A1C</td>
<td>OR A1C ≥6.5% (48 mmol/mol). The test should be performed in a laboratory using a method that is NGSP certified and standardized to the DCCT assay.*</td>
</tr>
<tr>
<td>In a patient with classic symptoms of hyperglycemia or hyperglycemic crisis, a random plasma glucose</td>
<td>OR ≥200 mg/dL (11.1 mmol/L).</td>
</tr>
</tbody>
</table>

*In the absence of unequivocal hyperglycemia, diagnosis requires two abnormal test results from the same sample or in two separate test samples.

Complications Trial (DCCT) reference assay. Although point-of-care A1C assays may be NGSP certified or U.S. Food and Drug Administration approved for diagnosis, proficiency testing is not always mandated for performing the test. Therefore, point-of-care assays approved for diagnostic purposes should only be considered in settings licensed to perform moderate-to-high complexity tests. As discussed in Section 6 “Glycemic Targets,” point-of-care A1C assays may be more generally applied for glucose monitoring.

The A1C has several advantages compared with the FPG and OGTT, including greater convenience (fasting not required), greater preanalytical stability, and less day-to-day perturbations during stress and illness. However, these advantages may be offset by the lower sensitivity of A1C at the designated cut point, greater cost, limited availability of A1C testing in certain regions of the developing world, and the imperfect correlation between A1C and average glucose in certain individuals. The A1C test, with a diagnostic threshold of ≥6.5% (48 mmol/mol), diagnoses only 30% of the diabetes cases identified collectively using A1C, FPG, or 2-h PG, according to National Health and Nutrition Examination Survey (NHANES) data (10).

When using A1C to diagnose diabetes, it is important to recognize that A1C is an indirect measure of average blood glucose levels and to take other factors into consideration that may impact hemoglobin glycation independently of glycemia including HIV treatment (11,12), age, race/ethnicity, pregnancy status, genetic background, and anemia/hemoglobinopathies.

Age

The epidemiological studies that formed the basis for recommending A1C to diagnose diabetes included only adult populations (10). However, a recent ADA clinical guidance concluded that A1C, FPG, or 2-h PG can be used to test for prediabetes or type 2 diabetes in children and adolescents. (see p. S20 SCREENING AND TESTING FOR PREDIABETES AND TYPE 2 DIABETES IN CHILDREN AND ADOLESCENTS for additional information) (13).

Race/Ethnicity/Hemoglobinopathies

Hemoglobin variants can interfere with the measurement of A1C, although most assays in use in the U.S. are unaffected by the most common variants. Marked discrepancies between measured A1C and plasma glucose levels should prompt consideration that the A1C assay may not be reliable for that individual. For patients with a hemoglobin variant but normal red blood cell turnover, such as those with the sickle cell trait, an A1C assay without interference from hemoglobin variants should be used. An updated list of A1C assays with interferences is available at www.ngsp.org/interf.asp.

African Americans heterozygous for the common hemoglobin variant HbS may have, for any given level of mean glycemia, lower A1C by about 0.3% than those without the trait (14). Another genetic variant, X-linked glucose-6-phosphate dehydrogenase deficiency G202A, carried by 11% of African Americans, was associated with a decrease in A1C of about 0.8% in homozygous men and 0.7% in heterozygous women compared with those without the variant (15).

Even in the absence of hemoglobin variants, A1C levels may vary with race/ethnicity independently of glycemia (16–18). For example, African Americans may have higher A1C levels than non-Hispanic whites with similar fasting and postglucose load glucose levels (19), and A1C levels may be higher for a given mean glucose concentration when measured with continuous glucose monitoring (20). Though conflicting data exists, African Americans may also have higher levels of fructosamine and glycated albumin and lower levels of 1,5-anhydroglucitol, suggesting that their glycemic burden (particularly postprandially) may be higher (21,22). The association of A1C with risk for complications appears to be similar in African Americans and non-Hispanic whites (23,24).

Other Conditions Altering the Relationship of A1C and Glycemia

In conditions associated with increased red blood cell turnover, such as sickle cell disease, pregnancy (second and third trimesters), glucose-6-phosphate dehydrogenase deficiency (25,26), hemodilysis, recent blood loss or transfusion, or erythropoietin therapy, only plasma blood glucose criteria should be used to diagnose diabetes (27). A1C is less reliable than blood glucose measurement in other conditions such as postpartum (28–30), HIV treated with certain drugs (11), and iron-deficient anemia (31).

Confirming the Diagnosis

Unless there is a clear clinical diagnosis (e.g., patient in a hyperglycemic crisis or with classic symptoms of hyperglycemia and a random plasma glucose ≥200 mg/dL [11.1 mmol/L]), diagnosis requires two abnormal test results from the same sample (32) or in two separate test samples. If using two separate test samples, it is recommended that the second test, which may either be a repeat of the initial test or a different test, be performed without delay. For example, if the A1C is 7.0% (53 mmol/mol) and a repeat result is 6.8% (51 mmol/mol), the diagnosis of diabetes is confirmed. If two different tests (such as A1C and FPG) are both above the diagnostic threshold when analyzed from the same sample or in two different test samples, this also confirms the diagnosis. On the other hand, if a patient has discordant results
from two different tests, then the test result that is above the diagnostic cut point should be repeated, with consideration of the possibility of A1C assay interference. The diagnosis is made on the basis of the confirmed test. For example, if a patient meets the diabetes criterion of the A1C (two results ≥6.5% [48 mmol/mol]) but not FPG (<126 mg/dL [7.0 mmol/L]), that person should nevertheless be considered to have diabetes.

Since all the tests have preanalytic and analytic variability, it is possible that an abnormal result (i.e., above the diagnostic threshold), when repeated, will produce a value below the diagnostic cut point. This scenario is likely for FPG and 2-h PG if the glucose samples remain at room temperature and are not centrifuged promptly. Because of the potential for preanalytic variability, it is critical that samples for plasma glucose be spun and separated immediately after they are drawn. If patients have test results near the margins of the diagnostic threshold, the health care professional should follow the patient closely and repeat the test in 3–6 months.

TYPE 1 DIABETES

Recommendations

2.4 Plasma blood glucose rather than A1C should be used to diagnose the acute onset of type 1 diabetes in individuals with symptoms of hyperglycemia.

2.5 Screening for type 1 diabetes risk with a panel of autoantibodies is currently recommended only in the setting of a research trial or in first-degree family members of a proband with type 1 diabetes.

2.6 Persistence of two or more autoantibodies predicts clinical diabetes and may serve as an indication for intervention in the setting of a clinical trial.

Diagnosis

In a patient with classic symptoms, measurement of plasma glucose is sufficient to diagnose diabetes (symptoms of hyperglycemia or hyperglycemic crisis plus a random plasma glucose ≥200 mg/dL [11.1 mmol/L]). In these cases, knowing the plasma glucose level is critical because, in addition to confirming that symptoms are due to diabetes, it will inform management decisions. Some providers may also want to know the A1C to determine how long a patient has had hyperglycemia. The criteria to diagnose diabetes are listed in Table 2.2.

Immune-Mediated Diabetes

This form, previously called “insulin-dependent diabetes” or “juvenile-onset diabetes,” accounts for 5–10% of diabetes and is due to cellular-mediated autoimmune destruction of the pancreatic β-cells. Autoimmune markers include islet cell autoantibodies and autoantibodies to GAD (GAD65), insulin, the tyrosine phosphatases IA-2 and IA-2β, and ZnT8. Type 1 diabetes is defined by the presence of one or more of these autoimmune markers. The disease has strong HLA associations, with linkage to the DQA and DOB genes. These HLA-DR/DQ alleles can be either predisposing or protective.

The rate of β-cell destruction is quite variable, being rapid in some individuals (mainly infants and children) and slow in others (mainly adults). Children and adolescents may present with DKA as the first manifestation of the disease. Others have modest fasting hyperglycemia that can rapidly change to severe hyperglycemia and/or DKA with infection or other stress. Adults may retain sufficient β-cell function to prevent DKA for many years; such individuals eventually become dependent on insulin for survival and are at risk for DKA. At this latter stage of the disease, there is little or no insulin secretion, as manifested by low or undetectable levels of plasma C-peptide. Immune-mediated diabetes commonly occurs in childhood and adolescence, but it can occur at any age, even in the 8th and 9th decades of life.

Autoimmune destruction of β-cells has multiple genetic predispositions and is also related to environmental factors that are still poorly defined. Although patients are not typically obese when they present with type 1 diabetes, obesity should not preclude the diagnosis. People with type 1 diabetes are also prone to other autoimmune disorders such as Hashimoto thyroiditis, Graves disease, Addison disease, celiac disease, vitiligo, autoimmune hepatitis, myasthenia gravis, and pernicious anemia (see Section 4 “Comprehensive Medical Evaluation and Assessment of Comorbidities”).

Idiopathic Type 1 Diabetes

Some forms of type 1 diabetes have no known etiologies. These patients have permanent insulinopenia and are prone to DKA, but have no evidence of β-cell autoimmunity. Although only a minority of patients with type 1 diabetes fall into this category, those who do, most are of African or Asian ancestry. Individuals with this form of diabetes suffer from episodic DKA and exhibit varying degrees of insulin deficiency between episodes. This form of diabetes is strongly inherited and is not HLA associated. An absolute requirement for insulin replacement therapy in affected patients may be intermittent.

Screening for Type 1 Diabetes Risk

The incidence and prevalence of type 1 diabetes is increasing (33). Patients with type 1 diabetes often present with acute symptoms of diabetes and markedly elevated blood glucose levels, and approximately one-third are diagnosed with life-threatening DKA (2). Several studies indicate that measuring islet autoantibodies in relatives of those with type 1 diabetes may identify individuals who are at risk for developing type 1 diabetes (5). Such testing, coupled with education about diabetes symptoms and close follow-up, may enable earlier identification of type 1 diabetes onset. A study reported the risk of progression to type 1 diabetes from the time of seroconversion to autoantibody positivity in three pediatric cohorts from Finland, Germany, and the U.S. Of the 585 children who developed more than two autoantibodies, nearly 70% developed type 1 diabetes within 10 years and 84% within 15 years (34). These findings are highly significant because while the German group was recruited from offspring of parents with type 1 diabetes, the Finnish and American groups were recruited from the general population. Remarkably, the findings in all three groups were the same, suggesting that the same sequence of events led to clinical disease in both “sporadic” and familial cases of type 1 diabetes. Indeed, the risk of type 1 diabetes increases as the number of relevant autoantibodies detected increases (35–37).

Although there is currently a lack of accepted screening programs, one should consider referring relatives of those with type 1 diabetes for antibody testing for risk assessment in the setting of a clinical research study (www.diabetestrialnet.org). Widespread clinical testing of asymptomatic low-risk individuals is not currently
PREDIABETES AND TYPE 2 DIABETES

Recommendations

2.7 Screening for prediabetes and type 2 diabetes with an informal assessment of risk factors or validated tools should be considered in asymptomatic adults. B

2.13 Risk-based screening for prediabetes and/or type 2 diabetes should be considered after the onset of puberty or after 10 years of age, whichever occurs earlier, in children and adolescents who are overweight (BMI ≥85th percentile) or obese (BMI ≥95th percentile) and who have additional risk factors for diabetes. (See Table 2.4 for evidence grading of risk factors.)

Prediabetes

“Prediabetes” is the term used for individuals whose glucose levels do not meet the criteria for diabetes but are too high to be considered normal (23,24). Patients with prediabetes are defined by the presence of IFG and/or IGT and/or A1C 5.7–6.4% (39–47 mmol/mol) (Table 2.5). Prediabetes should not be viewed as a clinical entity in its own right but rather as an increased risk for diabetes and cardiovascular disease (CVD). Criteria for testing for diabetes or prediabetes in asymptomatic adults is outlined in Table 2.3. Prediabetes is associated with obesity (especially abdominal or visceral obesity), dyslipidemia with high triglycerides and/or low HDL cholesterol, and hypertension.

Diagnosis

IFG is defined as FPG levels between 100 and 125 mg/dL (between 5.6 and 6.9 mmol/L) (38,39) and IGT as 2-h PG during 75-g OGTT levels between 140 and 199 mg/dL (between 7.8 and 11.0 mmol/L) (40). It should be noted that the World Health Organization (WHO) and numerous other diabetes organizations define the IFG cutoff at 110 mg/dL (6.1 mmol/L).

As with the glucose measures, several prospective studies that used A1C to predict the progression to diabetes as defined by A1C criteria demonstrated a strong, continuous association between A1C and subsequent diabetes. In a systematic review of 44,203 individuals from 16 cohort studies with a follow-up interval averaging 5.6 years (range 2.8–12 years), those with A1C between 5.5 and 6.0% (between 37 and 42 mmol/mol) had a substantially increased risk of diabetes (5-year incidence from 9 to 25%). Those with an A1C range of 6.0–6.5% (42–48 mmol/mol) had a 5-year risk of developing diabetes between 25 and 50% and a relative risk 20 times higher compared with A1C of 5.0% (31 mmol/mol) (41). In a community-based study of African American and non-Hispanic white adults without diabetes, baseline A1C was a stronger predictor of subsequent diabetes and cardiovascular events than fasting glucose (42). Other analyses suggest that A1C of 5.7% (39 mmol/mol) or higher is associated with a diabetes risk similar to that of the high-risk participants in the Diabetes Prevention Program (DPP) (43), and A1C at baseline was a strong predictor of the development of glucose-defined diabetes during the DPP and its follow-up (44).

Hence, it is reasonable to consider an A1C range of 5.7–6.4% (39–47 mmol/mol) as identifying individuals with prediabetes. Similar to those with IFG and/or IGT, individuals with A1C of 5.7–6.4% (39–47 mmol/mol) should be informed of their increased risk for diabetes.

Table 2.2—Criteria for testing for diabetes or prediabetes in asymptomatic adults

1. Testing should be considered in overweight or obese (BMI ≥25 kg/m² or ≥23 kg/m² in Asian Americans) adults who have one or more of the following risk factors:
 - First-degree relative with diabetes
 - High-risk race/ethnicity (e.g., African American, Latino, Native American, Asian American, Pacific Islander)
 - History of CVD
 - Hypertension (≥140/90 mmHg or on therapy for hypertension)
 - HDL cholesterol level <35 mg/dL (0.90 mmol/L) and/or a triglyceride level >250 mg/dL (2.82 mmol/L)
 - Women with polycystic ovary syndrome
 - Physical inactivity
 - Other clinical conditions associated with insulin resistance (e.g., severe obesity, acanthosis nigricans)

2. Patients with prediabetes (A1C ≥5.7% [39 mmol/mol], IGT, or IFG) should be tested yearly.

3. Women who were diagnosed with GDM should have lifelong testing at least every 3 years.

4. For all other patients, testing should begin at age 45 years.

5. If results are normal, testing should be repeated at a minimum of 3-year intervals, with consideration of more frequent testing depending on initial results and risk status.
Table 2.4—Risk-based screening for type 2 diabetes or prediabetes in asymptomatic children and adolescents in a clinical setting

<table>
<thead>
<tr>
<th>Risk factors based on the strength of their association with diabetes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal history of diabetes or GDM during the child’s gestation</td>
</tr>
<tr>
<td>Family history of type 2 diabetes in first- or second-degree relative</td>
</tr>
<tr>
<td>Race/ethnicity (Native American, African American, Latino, Asian American, Pacific Islander)</td>
</tr>
<tr>
<td>Signs of insulin resistance or conditions associated with insulin resistance (acanthosis nigricans, hypertension, dyslipidemia, polycystic ovary syndrome, or small-for-gestational-age birth weight)</td>
</tr>
</tbody>
</table>

*After the onset of puberty or after 10 years of age, whichever occurs earlier. If tests are normal, repeat testing at a minimum of 3-year intervals, or more frequently if BMI is increasing, is recommended.

Table 2.5—Criteria defining prediabetes*

<table>
<thead>
<tr>
<th>FPG 100 mg/dL (5.6 mmol/L) to 125 mg/dL (6.9 mmol/L) (IFG)</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-h PG during 75-g OGTT 140 mg/dL (7.8 mmol/L) to 199 mg/dL (11.0 mmol/L) (IGT)</td>
<td>OR</td>
</tr>
<tr>
<td>A1C 5.7–6.4% (39–47 mmol/mol)</td>
<td></td>
</tr>
</tbody>
</table>

*For all three tests, risk is continuous, extending below the lower limit of the range and becoming disproportionately greater at the higher end of the range.

and CVD and counseled about effective strategies to lower their risks (see Section 3 “Prevention or Delay of Type 2 Diabetes”). Similar to glucose measurements, the continuum of risk is curvilinear, so as A1C rises, the diabetes risk rises disproportionately (41). Aggressive interventions and vigilant follow-up should be pursued for those considered at very high risk (e.g., those with A1C >6.0% [42 mmol/mol]).

Table 2.5 summarizes the categories of prediabetes and Table 2.3 the criteria for prediabetes testing. The ADA diabetes risk test is an additional option for assessment to determine the appropriateness of testing for diabetes or prediabetes in asymptomatic adults. (Fig. 2.1) (diabetes.org/socrisktest). For additional background regarding risk factors and screening for prediabetes, see pp. S18–S20 (SCREENING AND TESTING FOR PREDIABETES AND TYPE 2 DIABETES IN ASYMPTOMATIC ADULTS AND SCREENING AND TESTING FOR PREDIABETES AND TYPE 2 DIABETES IN CHILDREN AND ADOLESCENTS).

Type 2 Diabetes

Type 2 diabetes, previously referred to as “noninsulin-dependent diabetes” or “adult-onset diabetes,” accounts for 90–95% of all diabetes. This form encompasses individuals who have relative (rather than absolute) insulin deficiency and have peripheral insulin resistance. At least initially, and often throughout their lifetime, these individuals may not need insulin treatment to survive.

There are various causes of type 2 diabetes. Although the specific etiologies are not known, autoimmune destruction of β-cells does not occur and patients do not have any of the other known causes of diabetes. Most but not all patients with type 2 diabetes are overweight or obese. Excess weight itself causes some degree of insulin resistance. Patients who are not obese or overweight by traditional weight criteria may have an increased percentage of body fat distributed predominantly in the abdominal region.

DKA seldom occurs spontaneously in type 2 diabetes; when seen, it usually arises in association with the stress of another illness such as infection or with the use of certain drugs (e.g., corticosteroids, atypical antipsychotics, and sodium–glucose cotransporter 2 inhibitors) (45,46). Type 2 diabetes frequently goes undiagnosed for many years because hyperglycemia develops gradually and, at earlier stages, is often not severe enough for the patient to notice the classic diabetes symptoms. Nevertheless, even undiagnosed patients are at increased risk of developing macrovascular and microvascular complications.

Whereas patients with type 2 diabetes may have insulin levels that appear normal or elevated, the higher blood glucose levels in these patients would be expected to result in even higher insulin values had their β-cell function been normal. Thus, insulin secretion is defective in these patients and insufficient to compensate for insulin resistance. Insulin resistance may improve with weight reduction and/or pharmacologic treatment of hyperglycemia but is seldom restored to normal.

The risk of developing type 2 diabetes increases with age, obesity, and lack of physical activity. It occurs more frequently in women with prior GDM, in those with hypertension or dyslipidemia, and in certain racial/ethnic subgroups (African American, American Indian, Hispanic/Latino, and Asian American). It is often associated with a strong genetic predisposition or family history in first-degree relatives, more so than type 1 diabetes. However, the genetics of type 2 diabetes is poorly understood. In adults without traditional risk factors for type 2 diabetes and/or younger age, consider antibody testing to exclude the diagnosis of type 1 diabetes (i.e., GAD).

Screening and Testing for Prediabetes and Type 2 Diabetes in Asymptomatic Adults

Screening for prediabetes and type 2 diabetes risk through an informal assessment of risk factors (Table 2.3) or with an assessment tool, such as the ADA risk test (Fig. 2.1) (diabetes.org/socrisktest), is recommended to guide providers on whether performing a diagnostic test (Table 2.2) is appropriate. Prediabetes and type 2 diabetes meet criteria for conditions in which early detection is appropriate. Both conditions are common and impose significant clinical and public health burdens. There is often a long presymptomatic phase before the diagnosis of type 2 diabetes. Simple tests to detect preclinical disease are readily available. The duration of glycemic burden is a strong predictor of adverse outcomes. There are effective interventions that prevent progression from prediabetes to diabetes (see Section 3 “Prevention or Delay of Type 2 Diabetes”) and reduce the risk of diabetes complications.
Approximately one-quarter of people with diabetes in the U.S. and nearly half of Asian and Hispanic Americans with diabetes are undiagnosed (38,39). Although screening of asymptomatic individuals to identify those with prediabetes or diabetes might seem reasonable, rigorous clinical trials to prove the effectiveness of such screening have not been conducted and are unlikely to occur.

A large European randomized controlled trial compared the impact of screening for diabetes and intensive care. The results showed that screening did not significantly reduce the risk of developing diabetes or its complications. This highlights the need for further research to determine the optimal strategies for diabetes prevention and management.
multifactorial intervention with that of screening and routine care (47). General practice patients between the ages of 40 and 69 years were screened for diabetes and randomly assigned by practice to intensive treatment of multiple risk factors or routine diabetes care. After 5.3 years of follow-up, CVD risk factors were modestly but significantly improved with intensive treatment compared with routine care, but the incidence of first CVD events or mortality was not significantly different between the groups (40). The excellent care provided to patients in the routine care group and the lack of an unscreened control arm limited the authors’ ability to determine whether screening and early treatment improved outcomes compared with no screening and later treatment after clinical diagnoses. Computer simulation modeling studies suggest that major benefits are likely to accrue from the early diagnosis and treatment of hyperglycemia and cardiovascular risk factors in type 2 diabetes (48); moreover, screening, beginning at age 30 or 45 years and independent of risk factors, may be cost-effective (<$11,000 per quality-adjusted life-year gained) (49).

Additional considerations regarding testing for type 2 diabetes and prediabetes in asymptomatic patients include the following.

Age
Age is a major risk factor for diabetes. Testing should begin at no later than age 45 years for all patients. Screening should be considered in overweight or obese adults of any age with one or more risk factors for diabetes.

BMI and Ethnicity
In general, BMI ≥ 25 kg/m2 is a risk factor for diabetes. However, data suggest that the BMI cut point should be lower for the Asian American population (50,51). The BMI cut points fall consistently between 23 and 24 kg/m2 (sensitivity of 80%) for nearly all Asian American subgroups (with levels slightly lower for Japanese Americans). This makes a rounded cut point of 23 kg/m2 practical. An argument can be made to push the BMI cut point to lower than 23 kg/m2 in favor of increased sensitivity; however, this would lead to an unacceptably low specificity (13.1%). Data from the WHO also suggest that a BMI of ≥ 23 kg/m2 should be used to define increased risk in Asian Americans (52). The finding that one-third to one-half of diabetes in Asian Americans is undiagnosed suggests that testing is not occurring at lower BMI thresholds (53,54).

Evidence also suggests that other populations may benefit from lower BMI cut points. For example, in a large multi-ethnic cohort study, for an equivalent incidence rate of diabetes, a BMI of 30 kg/m2 in non-Hispanic whites was equivalent to a BMI of 26 kg/m2 in African Americans (55).

Medications
Certain medications, such as glucocorticoids, thiazide diuretics, some HIV medications, and atypical antipsychotics (56), are known to increase the risk of diabetes and should be considered when deciding whether to screen.

Testing Interval
The appropriate interval between screening tests is not known (57). The rationale for the 3-year interval is that with this interval, the number of false-positive tests that require confirmatory testing will be reduced and individuals with false-negative tests will be retested before substantial time elapses and complications develop (57).

Community Screening
Ideally, testing should be carried out within a health care setting because of the need for follow-up and treatment. Community screening outside a health care setting is generally not recommended because people with positive tests may not seek, or have access to, appropriate follow-up testing and care. However, in specific situations where an adequate referral system is established beforehand for positive tests, community screening may be considered. Community testing may also be poorly targeted; i.e., it may fail to reach the groups most at risk and inappropriately test those at very low risk or even those who have already been diagnosed (58).

Screening in Dental Practices
Because periodontal disease is associated with diabetes, the utility of screening in a dental setting and referral to primary care as a means to improve the diagnosis of prediabetes and diabetes has been explored (59–61), with one study estimating that 30% of patients ≥ 30 years of age seen in general dental practices had dysglycemia (61). Further research is needed to demonstrate the feasibility, effectiveness, and cost-effectiveness of screening in this setting.

Screening and Testing for Prediabetes and Type 2 Diabetes in Children and Adolescents
In the last decade, the incidence and prevalence of type 2 diabetes in adolescents has increased dramatically, especially in racial and ethnic minority populations (33). See Table 2.4 for recommendations on risk-based screening for type 2 diabetes or prediabetes in asymptomatic children and adolescents in a clinical setting (13). See Tables 2.2 and 2.5 for the criteria for the diagnosis of diabetes and prediabetes, respectively, which apply to children, adolescents, and adults. See Section 13 “Children and Adolescents” for additional information on type 2 diabetes in children and adolescents.

Some studies question the validity of A1C in the pediatric population, especially among certain ethnicities, and suggest OGTT or FPG as more suitable diagnostic tests (62). However, many of these studies do not recognize that diabetes diagnostic criteria are based on long-term health outcomes, and validations are not currently available in the pediatric population (63). The ADA acknowledges the limited data supporting A1C for diagnosing type 2 diabetes in children and adolescents. Although A1C is not recommended for diagnosis of diabetes in children with cystic fibrosis or symptoms suggestive of acute onset of type 1 diabetes and only A1C assays without interference are appropriate for children with hemoglobinopathies, the ADA continues to recommend A1C for diagnosis of type 2 diabetes in this cohort (64,65).

GESTATIONAL DIABETES MELLITUS

Recommendations

2.14 Test for undiagnosed diabetes at the first prenatal visit in those with risk factors using standard diagnostic criteria. B

2.15 Test for gestational diabetes mellitus at 24–28 weeks of gestation in pregnant women not previously known to have diabetes. A

2.16 Test women with gestational diabetes mellitus for prediabetes
or diabetes at 4–12 weeks postpartum, using the 75-g oral glucose tolerance test and clinically appropriate nonpregnancy diagnostic criteria. B

2.17 Women with a history of gestational diabetes mellitus should have lifelong screening for the development of diabetes or prediabetes at least every 3 years. B

2.18 Women with a history of gestational diabetes mellitus found to have prediabetes should receive intensive lifestyle interventions or metformin to prevent diabetes. A

Definition
For many years, GDM was defined as any degree of glucose intolerance that was first recognized during pregnancy (40), regardless of whether the condition may have predated the pregnancy or persisted after the pregnancy. This definition facilitated a uniform strategy for detection and classification of GDM, but it was limited by imprecision.

The ongoing epidemic of obesity and diabetes has led to more type 2 diabetes in women of childbearing age, with an increase in the number of pregnant women with undiagnosed type 2 diabetes (66). Because of the number of pregnant women with undiagnosed type 2 diabetes, it is reasonable to test women with risk factors for type 2 diabetes (67) (Table 2.3) at their initial prenatal visit, using standard diagnostic criteria (Table 2.2). Women diagnosed with diabetes by standard diagnostic criteria in the first trimester should be classified as having preexisting gestational diabetes (type 2 diabetes or, very rarely, type 1 diabetes or monogenic diabetes). Women found to have prediabetes in the first trimester may be encouraged to make lifestyle changes to reduce their risk of developing type 2 diabetes, and perhaps GDM, though more study is needed (68). GDM is diabetes that is first diagnosed in the second or third trimester of pregnancy that is not clearly either preexisting type 1 or type 2 diabetes (see Section 14 “Management of Diabetes in Pregnancy”). The International Association of the Diabetes and Pregnancy Study Groups (IADPSG) GDM diagnostic criteria for the 75-g OGTT as well as the GDM screening and diagnostic criteria used in the two-step approach were not derived from data in the first half of pregnancy, so the diagnosis of GDM in early pregnancy by either FPG or OGTT values is not evidence based (69).

Because GDM confers increased risk for the development of type 2 diabetes after delivery (70,71) and because effective prevention interventions are available (72,73), women diagnosed with GDM should receive lifelong screening for prediabetes and type 2 diabetes.

Diagnosis
GDM carries risks for the mother, fetus, and neonate. Not all adverse outcomes are of equal clinical importance. The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study (74), a large-scale multinational cohort study completed by more than 23,000 pregnant women, demonstrated that risk of adverse maternal, fetal, and neonatal outcomes continuously increased as a function of maternal glycemia at 24–28 weeks of gestation, even within ranges previously considered normal for pregnancy. For most complications, there was no threshold for risk. These results have led to careful reconsideration of the diagnostic criteria for GDM. GDM diagnosis (Table 2.6) can be accomplished with either of two strategies:

1. “One-step” 75-g OGTT or
2. “Two-step” approach with a 50-g (nonfasting) screen followed by a 100-g OGTT for those who screen positive

Different diagnostic criteria will identify different degrees of maternal hyperglycemia and maternal/fetal risk, leading some experts to debate, and disagree on, optimal strategies for the diagnosis of GDM.

One-Step Strategy
The IADPSG defined diagnostic cut points for GDM as the average fasting, 1-h, and 2-h PG values during a 75-g OGTT in

<table>
<thead>
<tr>
<th>Table 2.6—Screening for and diagnosis of GDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-step strategy</td>
</tr>
<tr>
<td>Perform a 75-g OGTT, with plasma glucose measurement when patient is fasting and at 1 and 2 h, at 24–28 weeks of gestation in women not previously diagnosed with diabetes. The OGTT should be performed in the morning after an overnight fast of at least 8 h. The diagnosis of GDM is made when any of the following plasma glucose values are met or exceeded:</td>
</tr>
<tr>
<td>Carpenter-Coustan (86) or NDDG (87)</td>
</tr>
<tr>
<td>Fasting</td>
</tr>
<tr>
<td>1 h</td>
</tr>
<tr>
<td>2 h</td>
</tr>
<tr>
<td>3 h</td>
</tr>
</tbody>
</table>

NDDG, National Diabetes Data Group. *ACOG notes that one elevated value can be used for diagnosis (82).
women at 24–28 weeks of gestation who participated in the HAPO study at which odds for adverse outcomes reached 1.75 times the estimated odds of these outcomes at the mean fasting, 1-h, and 2-h PG levels of the study population. This one-step strategy was anticipated to significantly increase the incidence of GDM (from 5–6% to 15–20%), primarily because only one abnormal value, not two, became sufficient to make the diagnosis (75). The anticipated increase in the incidence of GDM could have a substantial impact on costs and medical infrastructure needs and has the potential to “medicalize” pregnancies previously categorized as normal. A recent follow-up study of women participating in a blinded study of pregnancy OGTTs found that 11 years after their pregnancies, women who would have been diagnosed with GDM by the one-step approach, as compared with those without, were at 3.4-fold higher risk of developing prediabetes and type 2 diabetes and had children with a higher risk of obesity and increased body fat, suggesting that the larger group of women identified by the one-step approach would benefit from increased screening for diabetes and prediabetes that would accompany a history of GDM (76). Nevertheless, the ADA recommends these diagnostic criteria with the intent of optimizing gestational outcomes because these criteria were the only ones based on pregnancy outcomes rather than end points such as prediction of subsequent maternal diabetes.

The expected benefits to the offspring are inferred from intervention trials that focused on women with lower levels of hyperglycemia than identified using older GDM diagnostic criteria. Those trials found modest benefits including reduced rates of large-for-gestational-age births and preeclampsia (77,78). It is important to note that 80–90% of women being treated for mild GDM in these two randomized controlled trials could be managed with lifestyle therapy alone. The OGTT glucose cutoffs in these two trials overlapped with the thresholds recommended by the IADPSG, and in one trial (78), the 2-h PG threshold (140 mg/dL [7.8 mmol/L]) was lower than the cutoff recommended by the IADPSG (153 mg/dL [8.5 mmol/L]). No randomized controlled trials of identifying and treating GDM using the IADPSG criteria versus older criteria have been published to date. Data are also lacking on how the treatment of lower levels of hyperglycemia affects a mother’s future risk for the development of type 2 diabetes and her offspring’s risk for obesity, diabetes, and other metabolic disorders. Additional well-designed clinical studies are needed to determine the optimal intensity of monitoring and treatment of women with GDM diagnosed by the one-step strategy (79,80).

Two-Step Strategy

In 2013, the National Institutes of Health (NIH) convened a consensus development conference to consider diagnostic criteria for diagnosing GDM (81). The 15-member panel had representatives from obstetrics/gynecology, maternal-fetal medicine, pediatrics, diabetes research, biostatistics, and other related fields. The panel recommended a two-step approach to screening that used a 1-h 50-g glucose load test (GLT) followed by a 3-h 100-g OGTT for those who screened positive. The American College of Obstetricians and Gynecologists (ACOG) recommends any of the commonly used thresholds of 130, 135, or 140 mg/dL for the 1-h 50-g GLT (82). A systematic review for the U.S. Preventive Services Task Force compared GLT cutoffs of 130 mg/dL (7.2 mmol/L) and 140 mg/dL (7.8 mmol/L) (83). The higher cutoff yielded sensitivity of 70–88% and specificity of 69–89%, while the lower cutoff was 88–99% sensitive and 66–77% specific. Data regarding a cutoff of 135 mg/dL are limited. As for other screening tests, choice of a cutoff is based upon the trade-off between sensitivity and specificity. The use of A1C at 24–28 weeks of gestation as a screening test for GDM does not function as well as the GLT (84).

Key factors cited by the NIH panel in their decision-making process were the lack of clinical trial data demonstrating the benefits of the one-step strategy and the potential negative consequences of identifying a large group of women with GDM, including medicalization of pregnancy with increased health care utilization and costs. Moreover, screening with a 50-g GLT does not require fasting and is therefore easier to accomplish for many women. Treatment of higher-threshold maternal hyperglycemia, as identified by the two-step approach, reduces rates of neonatal macrosomia, large-for-gestational-age births (85), and shoulder dystocia, without increasing small-for-gestational-age births. ACOG currently supports the two-step approach but notes that one elevated value, as opposed to two, may be used for the diagnosis of GDM (82). If this approach is implemented, the incidence of GDM by the two-step strategy will likely increase markedly. ACOG recommends either of two sets of diagnostic thresholds for the 3-h 100-g OGTT (86,87). Each is based on different mathematical conversions of the original recommended thresholds, which used whole blood and nonenzymatic methods for glucose determination. A secondary analysis of data from a randomized clinical trial of identification and treatment of mild GDM (88) demonstrated that treatment was similarly beneficial in patients meeting only the lower thresholds (86) and in those meeting only the higher thresholds (87). If the two-step approach is used, it would appear advantageous to use the lower diagnostic thresholds as shown in step 2 in Table 2.6.

Future Considerations

The conflicting recommendations from expert groups underscore the fact that there are data to support each strategy. A cost-benefit estimation comparing the two strategies concluded that the one-step approach is cost-effective only if patients with GDM receive postdelivery counseling and care to prevent type 2 diabetes (89). The decision of which strategy to implement must therefore be made based on the relative values placed on factors that have yet to be measured (e.g., willingness to change practice based on correlation studies rather than intervention trial results, available infrastructure, and importance of cost considerations).

As the IADPSG criteria (“one-step strategy”) have been adopted internationally, further evidence has emerged to support improved pregnancy outcomes with cost savings (90) and may be the preferred approach. Data comparing population-wide outcomes with one-step versus two-step approaches have been inconsistent to date (91,92). In addition, pregnancies complicated by GDM per the IADPSG criteria, but not recognized as such, have comparable
outcomes to pregnancies diagnosed as GDM by the more stringent two-step criteria (93,94). There remains strong consensus that establishing a uniform approach to diagnosing GDM will benefit patients, caregivers, and policy makers. Longer-term outcome studies are currently underway.

Cystic fibrosis–related diabetes (CFRD) is the most common comorbidity in people with cystic fibrosis, occurring in about 20% of adolescents and 40–50% of adults (95). Diabetes in this population, compared with individuals with type 1 or type 2 diabetes, is associated with worse nutritional status, more severe inflammatory lung disease, and greater mortality. Insulin insufficiency is the primary defect in CFRD. Genetically determined β-cell function and insulin resistance associated with infection and inflammation may also contribute to the development of CFRD. Milder abnormalities of glucose tolerance are even more common and occur at earlier ages than CFRD. Whether individuals with IGT should be treated with insulin replacement has not currently been determined. Although screening for diabetes before the age of 10 years can identify risk for progression to CFRD in those with abnormal glucose tolerance, no benefit has been established with respect to weight, height, BMI, or lung function. Continuous glucose monitoring or HOMA of β-cell function (96) may be more sensitive than OGTT to detect risk for progression to CFRD; however, evidence linking these results to long-term outcomes is lacking, and these tests are not recommended for screening (97).

CFRD mortality has significantly decreased over time, and the gap in mortality between cystic fibrosis patients with and without diabetes has considerably narrowed (98). There are limited clinical trial data on therapy for CFRD. The largest study compared three regimens: premeal insulin aspart, repaglinide, or oral placebo in cystic fibrosis patients with diabetes or abnormal glucose tolerance. Participants all had weight loss in the year preceding treatment; however, in the insulin-treated group, this pattern was reversed, and patients gained 0.39 (±0.21) BMI units (P = 0.02). The repaglinide-treated group had initial weight gain, but this was not sustained by 6 months. The placebo group continued to lose weight (99). Insulin remains the most widely used therapy for CFRD (100).

Additional resources for the clinical management of CFRD can be found in the position statement “Clinical Care Guidelines for Cystic Fibrosis—Related Diabetes: A Position Statement of the American Diabetes Association and a Clinical Practice Guideline of the Cystic Fibrosis Foundation, Endorsed by the Pediatric Endocrine Society” (101) and in the International Society for Pediatric and Adolescent Diabetes’s 2014 clinical practice consensus guidelines (102).

POSTTRANSPLANTATION DIABETES MELLITUS

Recommendations
2.23 Patients should be screened after organ transplantation for hyperglycemia, with a formal diagnosis of posttransplantation diabetes mellitus being best made once a patient is stable on an immunosuppressive regimen and in the absence of an acute infection. E

Several terms are used in the literature to describe the presence of diabetes following organ transplantation. “New-onset diabetes after transplantation” (NODAT) is one such designation that describes individuals who develop new-onset diabetes following transplant. NODAT excludes patients with pretransplant diabetes that was undiagnosed as well as posttransplant hyperglycemia that resolves by the time of discharge (103). Another term, “posttransplantation diabetes mellitus” (PTDM) (103, 104), describes the presence of diabetes in the posttransplant setting irrespective of the timing of diabetes onset.

Hyperglycemia is very common during the early posttransplant period, with ~90% of kidney allograft recipients exhibiting hyperglycemia in the first few weeks following transplant (103–106). In most cases, such stress- or steroid-induced hyperglycemia resolves by the time of discharge (106,107). Although the use of immunosuppressive therapies is a major contributor to the development of PTDM, the risks of transplant rejection outweigh the risks of PTDM and the role of the diabetes care provider is to treat hyperglycemia appropriately regardless of the type of immunosuppression (103). Risk factors for PTDM include both general diabetes risks (such as age, family history of diabetes, etc.) as well as transplant-specific factors, such as use of immunosuppressant agents (108). Whereas posttransplantation hyperglycemia is an important risk factor for subsequent PTDM, a formal diagnosis of PTDM is optimally made once the patient is stable on maintenance immunosuppression and in the absence of acute infection (106–108). The OGTT is considered the gold standard test for the diagnosis of PTDM (103,104,109, 110). However, screening patients using fasting glucose and/or A1C can identify high-risk patients requiring further assessment and may reduce the number of overall OGTTs required.

Few randomized controlled studies have reported on the short- and long-term
use of antihyperglycemic agents in the setting of PTDM (108,111,112). Most studies have reported that transplant patients with hyperglycemia and PTDM after transplantation have higher rates of rejection, infection, and rehospitalization (106,108,113). Insulin therapy is the agent of choice for the management of hyperglycemia and diabetes in the hospital setting. After discharge, patients with preexisting diabetes could go back on their pretransplant regimen if they were in good control before transplantation. Those with previously poor control or with persistent hyperglycemia should continue insulin with frequent home self-monitoring of blood glucose to determine when insulin dose reductions may be needed and when it may be appropriate to switch to noninsulin agents.

No studies to date have established which noninsulin agents are safest or most efficacious in PTDM. The choice of agent is usually made based on the side effect profile of the medication and possible interactions with the patient’s immunosuppression regimen (108). Drug dose adjustments may be required because of decreases in the glomerular filtration rate, a relatively common complication in transplant patients. A small short-term pilot study reported that metformin was safe to use in renal transplant recipients (114), but its safety has not been determined in other types of organ transplant. Thiazolidinediones have been used successfully in patients with liver and kidney transplants, but side effects include fluid retention, heart failure, and osteopenia (115,116). Dipeptidyl peptidase 4 inhibitors do not interact with immunosuppressant drugs and have demonstrated safety in small clinical trials (117,118). Well-designed intervention trials examining the efficacy and safety of these and other antihyperglycemic agents in patients with PTDM are needed.

Table 2.7—Most common causes of monogenic diabetes (119)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Inheritance</th>
<th>Clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCK</td>
<td>AD</td>
<td>GCK-MODY: stable, nonprogressive elevated fasting blood glucose; typically does not require treatment; microvascular complications are rare; small rise in 2-h PG level on OGTT (<54 mg/dL [3 mmol/L])</td>
</tr>
<tr>
<td>HNF1A</td>
<td>AD</td>
<td>HNF1A-MODY: progressive insulin secretory defect with presentation in adolescence or early adulthood; lowered renal threshold for glucosuria; large rise in 2-h PG level on OGTT (≥90 mg/dL [5 mmol/L]); sensitive to sulfonylureas</td>
</tr>
<tr>
<td>HNF4A</td>
<td>AD</td>
<td>HNF4A-MODY: progressive insulin secretory defect with presentation in adolescence or early adulthood; may have large birth weight and transient neonatal hypoglycemia; sensitive to sulfonylureas</td>
</tr>
<tr>
<td>HNF1B</td>
<td>AD</td>
<td>HNF1B-MODY: developmental renal disease (typically cystic); genitourinary abnormalities; atrophy of the pancreas; hyperuricemia; gout</td>
</tr>
<tr>
<td>Neonatal diabetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KCNJ11</td>
<td>AD</td>
<td>Permanent or transient: IUGR; possible developmental delay and seizures; responsive to sulfonylureas</td>
</tr>
<tr>
<td>INS</td>
<td>AD</td>
<td>Permanent: IUGR; insulin requiring</td>
</tr>
<tr>
<td>ABC8</td>
<td>AD</td>
<td>Permanent or transient: IUGR; rarely developmental delay; responsive to sulfonylureas</td>
</tr>
<tr>
<td>6q24 (PLAGL1, HYMA1)</td>
<td>AD for paternal duplications</td>
<td>Transient: IUGR; macroglossia; umbilical hernia; mechanisms include UPD6, paternal duplication or maternal methylation defect; may be treatable with medications other than insulin</td>
</tr>
<tr>
<td>GATA6</td>
<td>AD</td>
<td>Permanent: pancreatic hypoplasia; cardiac malformations; pancreatic exocrine insufficiency; insulin requiring</td>
</tr>
<tr>
<td>EIF2AK3</td>
<td>AR</td>
<td>Permanent: Wolcott-Rallison syndrome: epiphysyeal dysplasia; pancreatic exocrine insufficiency; insulin requiring</td>
</tr>
<tr>
<td>FOXP3</td>
<td>X-linked</td>
<td>Permanent: immunodysregulation, polyendocrinopathy, enteropathy X-linked (IPEX) syndrome: autoimmune diabetes; autoimmune thyroid disease; exfoliative dermatitis; insulin requiring</td>
</tr>
</tbody>
</table>

AD, autosomal dominant; AR, autosomal recessive; IUGR, intrauterine growth restriction.
monogenic diabetes. For a comprehensive list of causes, see Genetic Diagnosis of Endocrine Disorders (119).

Neonatal Diabetes
Diabetes occurring under 6 months of age is termed “neonatal” or “congenital” diabetes, and about 80–85% of cases can be found to have an underlying monogenic cause (120). Neonatal diabetes occurs much less often after 6 months of age, whereas autoimmune type 1 diabetes rarely occurs before 6 months of age. Neonatal diabetes can either be transient or permanent. Transient diabetes is most often due to overexpression of genes on chromosome 6q24, is recurrent in about half of cases, and may be treatable with medications other than insulin. Permanent neonatal diabetes is most commonly due to autosomal dominant mutations in the genes encoding the Kir6.2 subunit (KCNJ11) and SUR1 subunit (ABCC8) of the β-cell K_ATP channel. Correct diagnosis has critical implications because most patients with K_ATP-related neonatal diabetes will exhibit improved glycemic control when treated with high-dose oral sulfonylureas instead of insulin. Insulin gene (INS) mutations are the second most common cause of permanent neonatal diabetes, and, while intensive insulin management is currently the preferred treatment strategy, there are important genetic considerations, as most of the mutations that cause diabetes are dominantly inherited.

Maturity-Onset Diabetes of the Young MODY is frequently characterized by onset of hyperglycemia at an early age (classically before age 25 years, although diagnosis may occur at older ages). MODY is characterized by impaired insulin secretion with minimal or no defects in insulin action (in the absence of coexistent obesity). It is inherited in an autosomal dominant pattern with abnormalities in at least 13 genes on different chromosomes identified to date. The most commonly reported forms are GCK-MODY (MODY2), HNF1A-MODY (MODY3), and HNF4A-MODY (MODY1). Clinically, patients with GCK-MODY exhibit mild, stable, fasting hyperglycemia and do not require antihyperglycemic therapy except sometimes during pregnancy. Patients with HNF1A- or HNF4A-MODY usually respond well to low doses of sulfonylureas, which are considered first-line therapy. Mutations or deletions in HNF1B are associated with renal cysts and uterine malformations (renal cysts and diabetes [RCAD] syndrome). Other extremely rare forms of MODY have been reported to involve other transcription factor genes including PDX1 (IPF1) and NEUROD1.

Diagnosis of Monogenic Diabetes
A diagnosis of one of the three most common forms of MODY, including GCK-MODY, HNF1A-MODY, and HNF4A-MODY, allows for more cost-effective therapy (no therapy for GCK-MODY; sulfonylureas as first-line therapy for HNF1A-MODY and HNF4A-MODY). Additionally, diagnosis can lead to identification of other affected family members.

A diagnosis of MODY should be considered in individuals who have atypical diabetes and multiple family members with diabetes not characteristic of type 1 or type 2 diabetes, although admittedly “atypical diabetes” is becoming increasingly difficult to precisely define in the absence of a definitive set of tests for either type of diabetes. In most cases, the presence of autoantibodies for type 1 diabetes precludes further testing for monogenic diabetes, but the presence of autoantibodies in patients with monogenic diabetes has been reported (121). Individuals in whom monogenic diabetes is suspected should be referred to a specialist for further evaluation if available, and consultation is available from several centers. Readily available commercial genetic testing following the criteria listed below now enables a cost-effective (122), often cost-saving, genetic diagnosis that is increasingly supported by health insurance. A biomarker screening pathway such as the combination of urinary C-peptide/creatinine ratio and antibody screening may aid in determining who should get genetic testing for MODY (123). It is critical to correctly diagnose one of the monogenic forms of diabetes because these patients may be incorrectly diagnosed with type 1 or type 2 diabetes, leading to suboptimal, even potentially harmful, treatment regimens and delays in diagnosing other family members (124). The correct diagnosis is especially critical for those with GCK-MODY mutations where multiple studies have shown that no complications ensue in the absence of glucose-lowering therapy (125). Genetic counseling is recommended to ensure that affected individuals understand the patterns of inheritance and the importance of a correct diagnosis.

The diagnosis of monogenic diabetes should be considered in children and adults diagnosed with diabetes in early adulthood with the following findings:

- Diabetes diagnosed within the first 6 months of life (with occasional cases presenting later, mostly INS and ABCC8 mutations) (120,126)
- Diabetes without typical features of type 1 or type 2 diabetes (negative diabetes-associated autoantibodies, nonobese, lacking other metabolic features especially with strong family history of diabetes)
- Stable, mild fasting hyperglycemia (100–150 mg/dL [5.5–8.5 mmol/L]), stable A1C between 5.6 and 7.6% (between 38 and 60 mmol/mol), especially if nonobese

References
9. Meijnikman AS, De Block CEM, Dirinck E, et al. Not performing an OGTT results in significant
18. Herman WH. Are there clinical implications of racial differences in HbA1c? Yes, to not consider can do great harm! Diabetes Care 2016;39:1458–1461
35. Sosenko JM, Skyler JS, Palmer JP, et al.; Type 1 Diabetes TrialNet Study Group; Diabetes Preven-tion Trial-Type 1 Study Group. The prediction of type 1 diabetes by multiple autoantibody levels and their incorporation into an autoanti-body risk score in relatives of type 1 diabetic patients. Diabetes Care 2013;36:2615–2620
89. Werner EF, Pettker CM, Zuckerlieve L, et al. Screening for gestational diabetes mellitus: are the criteria proposed by the International Association of the Diabetes and Pregnancy Study Groups cost-effective? Diabetes Care 2012;35: 529–535
3. Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes—2019

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

For guidelines related to screening for increased risk for type 2 diabetes (prediabetes), please refer to Section 2 “Classification and Diagnosis of Diabetes.”

Recommendation 3.1
At least annual monitoring for the development of type 2 diabetes in those with prediabetes is suggested.

LIFESTYLE INTERVENTIONS

Recommendation 3.2
Refer patients with prediabetes to an intensive behavioral lifestyle intervention program modeled on the Diabetes Prevention Program (DPP) to achieve...
and maintain 7% loss of initial body weight and increase moderate-intensity physical activity (such as brisk walking) to at least 150 min/week. A

3.3 Based on patient preference, technology-assisted diabetes prevention interventions may be effective in preventing type 2 diabetes and should be considered. B

3.4 Given the cost-effectiveness of diabetes prevention, such intervention programs should be covered by third-party payers. B

The Diabetes Prevention Program
Several major randomized controlled trials, including the Diabetes Prevention Program (DPP) (1), the Finnish Diabetes Prevention Study (DPS) (2), and the Da Qing Diabetes Prevention Study (Da Qing study) (3), demonstrate that lifestyle/behavioral therapy featuring an individualized reduced calorie meal plan is highly effective in preventing type 2 diabetes and improving other cardiometabolic markers (such as blood pressure, lipids, and inflammation). The strongest evidence for diabetes prevention comes from the DPP trial (1). The DPP demonstrated that an intensive lifestyle intervention could reduce the incidence of type 2 diabetes by 58% over 3 years. Follow-up of three large studies of lifestyle intervention for diabetes prevention has shown sustained reduction in the rate of conversion to type 2 diabetes: 45% reduction at 23 years in the Da Qing study (3), 43% reduction at 7 years in the DPS (2), and 34% reduction at 10 years (4) and 27% reduction at 15 years (5) in the U.S. Diabetes Prevention Program Outcomes Study (DPPOS). Notably, in the 23-year follow-up for the Da Qing study, reductions in all-cause mortality and cardiovascular disease–related mortality were observed for the lifestyle intervention groups compared with the control group (3).

The two major goals of the DPP intensive, behavioral, lifestyle intervention were to achieve and maintain a minimum of 7% weight loss and 150 min of physical activity similar in intensity to brisk walking per week. The DPP lifestyle intervention was a goal-based intervention: all participants were given the same weight loss and physical activity goals, but individualization was permitted in the specific methods used to achieve the goals (6).

The 7% weight loss goal was selected because it was feasible to achieve and maintain and likely to lessen the risk of developing diabetes. Participants were encouraged to achieve the 7% weight loss during the first 6 months of the intervention. However, longer-term (4-year) data reveal maximal prevention of diabetes observed at about 7–10% weight loss (7). The recommended pace of weight loss was 1–2 lb/week. Calorie goals were calculated by estimating the daily calories needed to maintain the participant’s initial weight and subtracting 500–1,000 calories/day (depending on initial body weight). The initial focus was on reducing total dietary fat. After several weeks, the concept of calorie balance and the need to restrict calories as well as fat was introduced (6).

The goal for physical activity was selected to approximate at least 700 kcal/week expenditure from physical activity. For ease of translation, this goal was described as at least 150 min of moderate-intensity physical activity per week similar in intensity to brisk walking. Participants were encouraged to distribute their activity throughout the week with a minimum frequency of three times per week with at least 10 min per session. A maximum of 75 min of strength training could be applied toward the total 150 min/week physical activity goal (6).

To implement the weight loss and physical activity goals, the DPP used an individual model of treatment rather than a group-based approach. This choice was based on a desire to intervene before participants had the possibility of developing diabetes or losing interest in the program. The individual approach also allowed for tailoring of interventions to reflect the diversity of the population (6).

The DPP intervention was administered as a structured core curriculum followed by a more flexible maintenance program of individual sessions, group classes, motivational campaigns, and restart opportunities. The 16-session core curriculum was completed within the first 24 weeks of the program and included sections on lowering calories, increasing physical activity, self-monitoring, maintaining healthy lifestyle behaviors, and psychological, social, and motivational challenges. For further details on the core curriculum sessions, refer to ref. 6.

Nutrition
Structured behavioral weight loss therapy, including a reduced calorie meal plan and physical activity, is of paramount importance for those at high risk for developing type 2 diabetes who have overweight or obesity (1,7). Because weight loss through lifestyle changes alone can be difficult to maintain long term (4), people being treated with weight loss therapy should have access to ongoing support and additional therapeutic options (such as pharmacotherapy) if needed. Based on intervention trials, the eating patterns that may be helpful for those with prediabetes include a Mediterranean eating plan (8–11) and a low-calorie, low-fat eating plan (5). Additional research is needed regarding whether a low-carbohydrate eating plan is beneficial for persons with prediabetes (12). In addition, evidence suggests that the overall quality of food consumed (as measured by the Alternative Healthy Eating Index), with an emphasis on whole grains, legumes, nuts, fruits and vegetables, and minimal refined and processed foods, is also important (13–15).

Whereas overall healthy low-calorie eating patterns should be encouraged, there is also some evidence that particular dietary components impact diabetes risk in observational studies. Higher intakes of nuts (16), berries (17), yogurt (18,19), coffee, and tea (20) are associated with reduced diabetes risk. Conversely, red meats and sugar-sweetened beverages are associated with an increased risk of type 2 diabetes (13).

As is the case for those with diabetes, individualized medical nutrition therapy (see Section 5 “Lifestyle Management” for more detailed information) is effective in lowering A1C in individuals diagnosed with prediabetes (21).

Physical Activity
Just as 150 min/week of moderate-intensity physical activity, such as brisk walking, showed beneficial effects in those with prediabetes (1), moderate-intensity physical activity has been shown to improve insulin sensitivity and reduce abdominal fat in children and young adults (22,23). On the basis of these findings, providers are encouraged to promote a DPP-style program, including its focus on physical activity, to all individuals who have been identified
to be at an increased risk of type 2 diabetes. In addition to aerobic activity, an exercise regimen designed to prevent diabetes may include resistance training (6,24). Breaking up prolonged sedentary time may also be encouraged, as it is associated with moderately lower postprandial glucose levels (25,26). The preventive effects of exercise appear to extend to the prevention of gestational diabetes mellitus (GDM) (27).

Technology-Assisted Interventions to Deliver Lifestyle Interventions
Technology-assisted interventions may effectively deliver the DPP lifestyle intervention, reducing weight and, therefore, diabetes risk (28–31). Such technology-assisted interventions may deliver content through smartphone and web-based applications and telehealth (28). The Centers for Disease Control and Prevention (CDC) Diabetes Prevention Recognition Program (DPRP) (www.cdc.gov/diabetes/prevention/lifestyle-program) does certify technology-assisted modalities as effective vehicles for DPP-based interventions; such programs must use an approved curriculum, include interaction with a coach (which may be virtual), and attain the DPRP outcomes of participation, physical activity reporting, and weight loss. The selection of an in-person or virtual program should be based on patient preference.

Cost-effectiveness
A cost-effectiveness model suggested that the lifestyle intervention used in the DPP was cost-effective (32,33). Actual cost data from the DPP and DPPOS confirmed this (34). Group delivery of DPP content in community or primary care settings has the potential to reduce overall program costs while still producing weight loss and diabetes risk reduction (35–37). The use of community health workers to support DPP efforts has been shown to be effective with cost savings (38) (see Section 1 “Improving Care and Promoting Health in Populations” for more information). The CDC coordinates the National Diabetes Prevention Program (National DPP), a resource designed to bring evidence-based lifestyle change programs for preventing type 2 diabetes to communities (www.cdc.gov/diabetes/prevention/index.htm). Early results from the CDC’s National DPP during the first 4 years of implementation are promising (39). In an effort to expand preventive services using a cost-effective model that began in April 2018, the Centers for Medicare & Medicaid Services has expanded Medicare reimbursement coverage for the National DPP lifestyle intervention to organizations recognized by the CDC that become Medicare suppliers for this service (https://innovation.cms.gov/initiatives/medicare-diabetes-prevention-program/).

Tobacco Use
Smoking may increase the risk of type 2 diabetes (40); therefore, evaluation for tobacco use and referral for tobacco cessation, if indicated, should be part of routine care for those at risk for diabetes. Of note, the years immediately following smoking cessation may represent a time of increased risk for diabetes (40–42) and patients should be monitored for diabetes development and receive evidence-based interventions for diabetes prevention as described in this section. See Section 5 “Lifestyle Management” for more detailed information.

PHARMACOLOGIC INTERVENTIONS

Recommendations
3.5 Metformin therapy for prevention of type 2 diabetes should be considered in those with prediabetes, especially for those with BMI ≥35 kg/m², those aged <60 years, and women with prior gestational diabetes mellitus. A

3.6 Long-term use of metformin may be associated with biochemical vitamin B12 deficiency, and periodic measurement of vitamin B12 levels should be considered in metformin-treated patients, especially in those with anemia or peripheral neuropathy. B

Pharmacologic agents including metformin, α-glucosidase inhibitors, glucagon-like peptide 1 receptor agonists, thiazolidinediones, and several agents approved for weight loss have been shown in research studies to decrease the incidence of diabetes to various degrees in those with prediabetes (1,43–49), though none are approved by the U.S. Food and Drug Administration specifically for diabetes prevention. One has to balance the risk/benefit of each medication. Metformin has the strongest evidence base (50) and demonstrated long-term safety as pharmacologic therapy for diabetes prevention (48). For other drugs, cost, side effects, and durable efficacy require consideration.

Metformin was overall less effective than lifestyle modification in the DPP and DPPOS, though group differences declined over time (5) and metformin may be cost-saving over a 10-year period (34). It was as effective as lifestyle modification in participants with BMI ≥35 kg/m² but not significantly better than placebo in those over 60 years of age (1). In the DPP, for women with history of GDM, metformin and intensive lifestyle modification led to an equivalent 50% reduction in diabetes risk (51), and both interventions remained highly effective during a 10-year follow-up period (52). In the Indian Diabetes Prevention Programme (IDPP-1), metformin and the lifestyle intervention reduced diabetes risk similarly at 30 months; of note, the lifestyle intervention in IDPP-1 was less intensive than that in the DPP (53). Based on findings from the DPP, metformin should be recommended as an option for high-risk individuals (e.g., those with a history of GDM or those with BMI ≥35 kg/m²). Consider monitoring vitamin B12 levels in those taking metformin chronically to check for possible deficiency (54) (see Section 9 “Pharmacologic Approaches to Glycemic Treatment” for more details).

PREVENTION OF CARDIOVASCULAR DISEASE

Recommendation
3.7 Prediabetes is associated with heightened cardiovascular risk; therefore, screening for and treatment of modifiable risk factors for cardiovascular disease is suggested. B

People with prediabetes often have other cardiovascular risk factors, including hypertension and dyslipidemia (55), and are at increased risk for cardiovascular disease (56). Although treatment goals for people with prediabetes are the same as for the general population (57), increased vigilance is warranted to identify
and treat these and other cardiovascular risk factors (e.g., smoking).

DIABETES SELF-MANAGEMENT EDUCATION AND SUPPORT

Recommendation

3.8 Diabetes self-management education and support programs may be appropriate venues for people with prediabetes to receive education and support to develop and maintain behaviors that can prevent or delay the development of type 2 diabetes.

As for those with established diabetes, the standards for diabetes self-management education and support (see Section 5 “Lifestyle Management”) can also apply to people with prediabetes. Currently, there are significant barriers to the provision of education and support to those with prediabetes. However, the strategies for supporting successful behavior change and the healthy behaviors recommended for people with prediabetes are comparable to those for diabetes. Although reimbursement remains a barrier, studies show that providers of diabetes self-management education and support are particularly well equipped to assist people with prediabetes in developing and maintaining behaviors that can prevent or delay the development of diabetes (21,58).

References

35. Ackermann RT, Finch EA, Brizendine E, Zhou H, Marrero DG. Translating the Diabetes
Prevention of or Delay of Type 2 Diabetes

33

4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Medical Care in Diabetes—2019

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

PATIENT-CENTERED COLLABORATIVE CARE

Recommendations

4.1 A patient-centered communication style that uses person-centered and strength-based language and active listening, elicits patient preferences and beliefs, and assesses literacy, numeracy, and potential barriers to care should be used to optimize patient health outcomes and health-related quality of life. B

4.2 Diabetes care should be managed by a multidisciplinary team that may draw from primary care physicians, subspecialty physicians, nurse practitioners, physician assistants, nurses, dietitians, exercise specialists, pharmacists, dentists, podiatrists, and mental health professionals. E

A successful medical evaluation depends on beneficial interactions between the patient and the care team. The Chronic Care Model (1–3) (see Section 1 “Improving Care and Promoting Health in Populations”) is a patient-centered approach to care that requires a close working relationship between the patient and clinicians involved in treatment planning. People with diabetes should receive health care from an interdisciplinary team that may include physicians, nurse practitioners, physician assistants, nurses, dietitians, exercise specialists, pharmacists, dentists, podiatrists, and mental health professionals. Individuals with diabetes must assume an active role in their care. The patient, family or support people, physicians, and health care team should together formulate the management plan, which includes lifestyle management (see Section 5 “Lifestyle Management”).

The goals of treatment for diabetes are to prevent or delay complications and maintain quality of life (Fig. 4.1). Treatment goals and plans should be created
with the patients based on their individual preferences, values, and goals. The management plan should take into account the patient’s age, cognitive abilities, school/work schedule and conditions, health beliefs, support systems, eating patterns, physical activity, social situation, family concerns, cultural factors, literacy and numeracy (mathematical literacy), diabetes complications and duration of disease, comorbidities, health priorities, other medical conditions, preferences for care, and life expectancy. Various strategies and techniques should be used to support patients’ self-management efforts, including providing education on problem-solving skills for all aspects of diabetes management.

Provider communications with patients and families should acknowledge that multiple factors impact glycemic management but also emphasize that collaboratively developed treatment plans and a healthy lifestyle can significantly improve disease outcomes and well-being (4–7). Thus, the goal of provider-patient communication is to establish a collaborative relationship and to assess and address self-management barriers without blaming patients for “noncompliance” or “nonadherence” when the outcomes of self-management are not optimal (8). The familiar terms “noncompliance” and “nonadherence” denote a passive, obedient role for a person with diabetes in “following doctor’s orders” that is at odds with the active role people with diabetes take in directing the day-to-day decision making, planning, monitoring, evaluation, and problem-solving involved in diabetes self-management. Using a nonjudgmental approach that normalizes periodic lapses in self-management may help minimize patients’ resistance to reporting problems with self-management. Empathizing and using active listening techniques, such as open-ended questions, reflective statements, and summarizing what the patient said, can help facilitate communication. Patients’ perceptions about their own ability, or self-efficacy, to self-manage diabetes are one important psychosocial factor related to improved diabetes self-management and treatment outcomes in diabetes (9–13) and should be a target of ongoing assessment, patient education, and treatment planning.

Language has a strong impact on perceptions and behavior. The use of empowering language in diabetes care and education can help to inform and motivate people, yet language that shames and judges may undermine this effort. The American Diabetes Association (ADA) and American Association of Diabetes Educators consensus report, “The Use of Language in Diabetes Care and Education,” provides the authors’ expert opinion regarding the use of language by health care professionals when speaking or writing about diabetes for people with diabetes or for professional audiences (14). Although further research is needed to address the impact of language on diabetes outcomes, the report includes five key consensus recommendations for language use:

- Use language that is neutral, nonjudgmental, and based on facts, actions, or physiology/biology.
- Use language that is free from stigma.
- Use language that is strength based, respectful, and inclusive and that imparts hope.
Use language that fosters collaboration between patients and providers.
Use language that is person centered (e.g., “person with diabetes” is preferred over “diabetic”).

COMPREHENSIVE MEDICAL EVALUATION

Recommendations

4.3 A complete medical evaluation should be performed at the initial visit to:
- Confirm the diagnosis and classify diabetes.
- Evaluate for diabetes complications and potential comorbid conditions.
- Review previous treatment and risk factor control in patients with established diabetes.
- Begin patient engagement in the formulation of a care management plan.
- Develop a plan for continuing care.

4.4 A follow-up visit should include most components of the initial comprehensive medical evaluation including: interval medical history, assessment of medication-taking behavior and intolerance/side effects, physical examination, laboratory evaluation as appropriate to assess attainment of A1C and metabolic targets, and assessment of risk for complications, diabetes self-management behaviors, nutrition, psychosocial health, and the need for referrals, immunizations, or other routine health maintenance screening.

4.5 Ongoing management should be guided by the assessment of diabetes complications and shared decision making to set therapeutic goals.

4.6 The 10-year risk of a first atherosclerotic cardiovascular disease event should be assessed using the race- and sex-specific Pooled Cohort Equations to better stratify atherosclerotic cardiovascular disease risk.

The comprehensive medical evaluation includes the initial and follow-up evaluations, assessment of complications, psychosocial assessment, management of comorbid conditions, and engagement of the patient throughout the process. While a comprehensive list is provided in Table 4.1, in clinical practice, the provider may need to prioritize the components of the medical evaluation given the available resources and time. The goal is to provide the health care team information to optimally support a patient. In addition to the medical history, physical examination, and laboratory tests, providers should assess diabetes self-management behaviors, nutrition, and psychosocial health (see Section 5 “Lifestyle Management”) and give guidance on routine immunizations. The assessment of sleep pattern and duration should be considered; a recent meta-analysis found that poor sleep quality, short sleep, and long sleep were associated with higher A1C in people with type 2 diabetes (15). Interval follow-up visits should occur at least every 3–6 months, individualized to the patient, and then annually.

Lifestyle management and psychosocial care are the cornerstones of diabetes management. Patients should be referred for diabetes self-management education and support, medical nutrition therapy, and assessment of psychosocial/emotional health concerns if indicated. Patients should receive recommended preventive care services (e.g., immunizations, cancer screening, etc.), smoking cessation counseling, and ophthalmological, dental, and podiatric referrals.

The assessment of risk of acute and chronic diabetes complications and treatment planning are key components of initial and follow-up visits (Table 4.2).

The risk of atherosclerotic cardiovascular disease and heart failure (Section 10 “Cardiovascular Disease and Risk Management”), chronic kidney disease staging (Section 11 “Microvascular Complications and Foot Care”), and risk of treatment-associated hypoglycemia (Table 4.3) should be used to individualize targets for glycemia (Section 6 “Glycemic Targets”), blood pressure, and lipids and to select specific glucose-lowering medication (Section 9 “Pharmacologic Approaches to Glycemic Treatment”), antihypertension medication, or statin treatment intensity.

Additional referrals should be arranged as necessary (Table 4.4). Clinicians should ensure that individuals with diabetes are appropriately screened for complications and comorbidities. Discussing and implementing an approach to glycemic control with the patient is a part, not the sole goal, of the patient encounter.

Immunizations

Recommendations

4.7 Provide routinely recommended vaccinations for children and adults with diabetes by age.

4.8 Annual vaccination against influenza is recommended for all people ≥6 months of age, especially those with diabetes.

4.9 Vaccination against pneumococcal disease, including pneumococcal pneumonia, with 13-valent pneumococcal conjugate vaccine (PCV13) is recommended for children before age 2 years. People with diabetes ages 2 through 64 years should also receive 23-valent pneumococcal polysaccharide vaccine (PPSV23). At age ≥65 years, regardless of vaccination history, additional PPSV23 vaccination is necessary.

4.10 Administer a 2- or 3-dose series of hepatitis B vaccine, depending on the vaccine, to unvaccinated adults with diabetes ages 18 through 59 years.

4.11 Consider administering 3-dose series of hepatitis B vaccine to unvaccinated adults with diabetes ages ≥60 years.

Children and adults with diabetes should receive vaccinations according to age-appropriate recommendations (16,17). The child and adolescent (≤18 years of age) vaccination schedule is available at www.cdc.gov/vaccines/schedules/hcp/imz/child-adolescent.html, and the adult (≥19 years of age) vaccination schedule is available at www.cdc.gov/vaccines/schedules/hcp/imz/adult.html. These immunization schedules include vaccination schedules specifically for children, adolescents, and adults with diabetes.

People with diabetes are at higher risk for hepatitis B infection and are more likely to develop complications from influenza and pneumococcal disease. The Centers for Disease Control and Prevention (CDC) Advisory Committee
| Table 4.1 – Components of the comprehensive diabetes medical evaluation at initial, follow-up, and annual visits |
|--|--|
| **PAST MEDICAL AND FAMILY HISTORY** | **INITIAL VISIT** | **EVERY FOLLOW-UP VISIT** | **ANNUAL VISIT** |
| Diabetes history | ✓ | ✓ | ✓ |
| - Characteristics at onset (e.g., age, symptoms) | ✓ | ✓ | ✓ |
| - Review of previous treatment regimens and response | ✓ | ✓ | ✓ |
| - Assess frequency/cause/severity of past hospitalizations | ✓ | ✓ | ✓ |
| Family history | ✓ | ✓ | ✓ |
| - Family history of diabetes in a first-degree relative | ✓ | ✓ | ✓ |
| - Family history of autoimmune disorder | ✓ | ✓ | ✓ |
| **PERSONAL HISTORY OF COMPLICATIONS AND COMMON COMORBIDITIES** | ✓ | ✓ | ✓ |
| - Macrovascular and microvascular | ✓ | ✓ | ✓ |
| - Common comorbidities (e.g., obesity, OSA) | ✓ | ✓ | ✓ |
| - Hypoglycemia: awareness/frequency/causes/timing of episodes | ✓ | ✓ | ✓ |
| - Presence of hemoglobinopathies or anemias | ✓ | ✓ | ✓ |
| - High blood pressure or abnormal lipids | ✓ | ✓ | ✓ |
| - Last dental visit | ✓ | ✓ | ✓ |
| - Last dilated eye exam | ✓ | ✓ | ✓ |
| - Visits to specialists | ✓ | ✓ | ✓ |
| **INTERVAL HISTORY** | ✓ | ✓ | ✓ |
| - Changes in medical/family history since last visit | ✓ | ✓ | ✓ |
| **LIFESTYLE FACTORS** | ✓ | ✓ | ✓ |
| - Eating patterns and weight history | ✓ | ✓ | ✓ |
| - Physical activity and sleep behaviors | ✓ | ✓ | ✓ |
| - Tobacco, alcohol, and substance use | ✓ | ✓ | ✓ |
| **MEDICATIONS AND VACCINATIONS** | ✓ | ✓ | ✓ |
| - Current medication regimen | ✓ | ✓ | ✓ |
| - Medication-taking behavior | ✓ | ✓ | ✓ |
| - Medication intolerance or side effects | ✓ | ✓ | ✓ |
| - Complementary and alternative medicine use | ✓ | ✓ | ✓ |
| - Vaccination history and needs | ✓ | ✓ | ✓ |
| **TECHNOLOGY USE** | ✓ | ✓ | ✓ |
| - Assess use of health apps, online education, patient portals, etc. | ✓ | ✓ | ✓ |
| - Glucose monitoring (meter/CGM): results and data use | ✓ | ✓ | ✓ |
| - Review insulin pump settings and use | ✓ | ✓ | ✓ |
| **BEHAVIORAL AND DIABETES SELF-MANAGEMENT SKILLS** | ✓ | ✓ | ✓ |
| Psychosocial conditions | ✓ | ✓ | ✓ |
| - Screen for depression, anxiety, and disordered eating; refer for further assessment or intervention if warranted | ✓ | ✓ | ✓ |
| - Identify existing social supports | ✓ | ✓ | ✓ |
| - Consider assessment for cognitive impairment* | ✓ | ✓ | ✓ |
| Diabetes self-management education and support | ✓ | ✓ | ✓ |
| - History of dietician/diabetes educator visits/classes | ✓ | ✓ | ✓ |
| - Assess diabetes self-management skills and barriers | ✓ | ✓ | ✓ |
| - Assess familiarity with carbohydrate counting (type 1 diabetes) | ✓ | ✓ | ✓ |
| Pregnancy planning | ✓ | ✓ | ✓ |
| - For women with childbearing capacity, review contraceptive needs and preconception planning | ✓ | ✓ | ✓ |

Continued on p. S38
on Immunization Practices (ACIP) recommends influenza, pneumococcal, and hepatitis B vaccinations specifically for people with diabetes. Vaccinations against tetanus-diphtheria-pertussis, measles-mumps-rubella, human papillomavirus, and shingles are also important for adults with diabetes, as they are for the general population.

Influenza

Influenza is a common, preventable infectious disease associated with high mortality and morbidity in vulnerable populations including the young and the elderly and people with chronic diseases. Influenza vaccination in people with diabetes has been found to significantly reduce influenza and diabetes-related hospital admissions (18).

Pneumococcal Pneumonia

Like influenza, pneumococcal pneumonia is a common, preventable disease. People with diabetes are at increased risk for the bacteremic form of pneumococcal infection and have been reported to have a high risk of nosocomial bacteremia, with a mortality rate as high as 50% (19). The ADA endorses recommendations from the CDC ACIP that adults age \(\geq 65 \) years, who are at higher risk for pneumococcal disease, receive an additional 23-valent pneumococcal polysaccharide vaccine (PPSV23), regardless of prior pneumococcal vaccination history. See detailed recommendations at [www.cdc.gov/vaccines/hcp/acip-recs/vacc-specifc/pneumo.html](http://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/pneumo.html).

Hepatitis B

Compared with the general population, people with type 1 or type 2 diabetes have higher rates of hepatitis B. This may be due to contact with infected blood
or through improper equipment use (glucose monitoring devices or infected needles). Because of the higher likelihood of transmission, hepatitis B vaccine is recommended for adults with diabetes age <60 years. For adults age ≥60 years, hepatitis B vaccine may be administered at the discretion of the treating clinician based on the patient’s likelihood of acquiring hepatitis B infection.

ASSESSMENT OF COMORBIDITIES

Besides assessing diabetes-related complications, clinicians and their patients need to be aware of common comorbidities that affect people with diabetes and may complicate management (20–24). Diabetes comorbidities are conditions that affect people with diabetes more often than age-matched people without diabetes. This section includes many of the common comorbidities observed in patients with diabetes but is not necessarily inclusive of all the conditions that have been reported.

Table 4.2—Assessment and treatment plan

Assess risk of diabetes complications
- ASCVD and heart failure history
- ASCVD risk factors (see Table 10.2) and 10-year ASCVD risk assessment
- Staging of chronic kidney disease (see Table 11.1)
- Hypoglycemia risk (Table 4.3)

Goal setting
- Set A1C/blood glucose target
- If hypertension present, establish blood pressure target
- Diabetes self-management goals (e.g., monitoring frequency)

Therapeutic treatment plan
- Lifestyle management
- Pharmacologic therapy (glucose lowering)
- Pharmacologic therapy (cardiovascular disease risk factors and renal)
- Use of glucose monitoring and insulin delivery devices
- Referral to diabetes education and medical specialists (as needed)

ASCVD, atherosclerotic cardiovascular disease. *Assessment and treatment planning is an essential component of initial and all follow-up visits.

Autoimmune Diseases

Recommendation 4.12 Consider screening patients with type 1 diabetes for autoimmune thyroid disease and celiac disease soon after diagnosis. B

People with type 1 diabetes are at increased risk for other autoimmune diseases including thyroid disease, primary adrenal insufficiency, celiac disease, autoimmune gastritis, autoimmune hepatitis, dermatomyositis, and myasthenia gravis (25–27). Type 1 diabetes may also occur with other autoimmune diseases in the context of specific genetic disorders or polyglandular autoimmune syndromes (28). In autoimmune diseases, the immune system fails to maintain self-tolerance to specific peptides within target organs. It is likely that many factors trigger autoimmune disease; however, common triggering factors are known for only some autoimmune conditions (i.e., gliadin peptides in celiac disease) (see Section 13 “Children and Adolescents”).

Cancer

Diabetes is associated with increased risk of cancers of the liver, pancreas, endometrium, colon/rectum, breast, and bladder (29). The association may result from shared risk factors between type 2 diabetes and cancer (older age, obesity, and physical inactivity) but may also be due to diabetes-related factors (30), such as underlying disease physiology or diabetes treatments, although evidence for these links is scarce. Patients with diabetes should be encouraged to undergo recommended age- and sex-appropriate cancer screenings and to reduce their modifiable cancer risk factors (obesity, physical inactivity, and smoking). New onset of atypical diabetes (lean body habitus, negative family history) in a middle-aged or older patient may precede the diagnosis of pancreatic adenocarcinoma (31). However, in the absence of other symptoms (e.g., weight loss, abdominal pain), routine screening of all such patients is not currently recommended.

Cognitive Impairment/Dementia

Recommendation 4.13 In people with a history of cognitive impairment/dementia, intensive glucose control cannot be expected to remediate deficits. Treatment should be tailored to avoid significant hypoglycemia. B

Diabetes is associated with a significantly increased risk and rate of cognitive decline and an increased risk of dementia (32,33). A recent meta-analysis of prospective observational studies in people with diabetes showed 73% increased risk of all types of dementia, 56% increased risk of Alzheimer dementia, and 127% increased risk of vascular dementia compared with individuals without diabetes (34). The reverse is also true: people with Alzheimer dementia are more likely to develop diabetes than people without Alzheimer dementia. In a 15-year prospective study of community-dwelling people ≥60 years of age, the presence of diabetes at baseline significantly increased the age- and sex-adjusted
incidence of all-cause dementia, Alzheimer dementia, and vascular dementia compared with rates in those with normal glucose tolerance (35).

Hyperglycemia

In those with type 2 diabetes, the degree and duration of hyperglycemia are related to dementia. More rapid cognitive decline is associated with both increased A1C and longer duration of diabetes (34). The Action to Control Cardiovascular Risk in Diabetes (ACCORD) study found that each 1% higher A1C level was associated with lower cognitive function in individuals with type 2 diabetes (36). However, the ACCORD study found no difference in cognitive outcomes in participants randomly assigned to intensive and standard glycemic control, supporting the recommendation that intensive glucose control should not be advised for the improvement of cognitive function in individuals with type 2 diabetes (37).

Hypoglycemia

In type 2 diabetes, severe hypoglycemia is associated with reduced cognitive function, and those with poor cognitive function have more severe hypoglycemia. In a long-term study of older patients with type 2 diabetes, individuals with one or more recorded episode of severe hypoglycemia had a stepwise increase in risk of dementia (38). Likewise, the ACCORD trial found that as cognitive function decreased, the risk of severe hypoglycemia increased (39). Tailoring glycemic therapy may help to prevent hypoglycemia in individuals with cognitive dysfunction.

Nutrition

In one study, adherence to the Mediterranean diet correlated with improved cognitive function (40). However, a recent Cochrane review found insufficient evidence to recommend any dietary change for the prevention or treatment of cognitive dysfunction (41).

Statins

A systematic review has reported that data do not support an adverse effect of statins on cognition (42). The U.S. Food and Drug Administration postmarketing surveillance databases have also revealed a low reporting rate for cognitive-related adverse events, including cognitive dysfunction or dementia, with statin therapy, similar to rates seen with other commonly prescribed cardiovascular medications (42). Therefore, fear of cognitive decline should not be a barrier to statin use in individuals with diabetes and a high risk for cardiovascular disease.

Nonalcoholic Fatty Liver Disease

Recommendation 4.14 Patients with type 2 diabetes or prediabetes and elevated liver enzymes (alanine aminotransferase) or fatty liver on ultrasound should be evaluated for presence of nonalcoholic steatohepatitis and liver fibrosis. C

Diabetes is associated with the development of nonalcoholic fatty liver disease, including its more severe manifestations of nonalcoholic steatohepatitis, liver fibrosis, cirrhosis, and hepatocellular carcinoma (43). Elevations of hepatic transaminase concentrations are associated with higher BMI, waist circumference, and triglyceride levels and lower HDL cholesterol levels. Noninvasive tests, such as elastography or fibrosis biomarkers, may be used to assess risk of fibrosis, but referral to a liver specialist and liver biopsy may be required for definitive diagnosis (43a). Interventions that improve metabolic abnormalities in patients with diabetes (weight loss, glycemic control, and treatment with specific drugs for hyperglycemia or dyslipidemia) are also beneficial for fatty liver disease (44,45). Pioglitazone and vitamin E treatment of biopsy-proven nonalcoholic steatohepatitis have been shown to improve liver histology, but effects on longer-term clinical outcomes are not known (46,47). Treatment with liraglutide and with sodium–glucose cotransporter 2 inhibitors (dapagliflozin and empagliflozin) has also shown some promise in preliminary studies, although benefits may be mediated, at least in part, by weight loss (48–50).

Pancreatitis

Recommendation 4.15 Islet autotransplantation should be considered for patients requiring total pancreatectomy for medically refractory chronic pancreatitis to prevent postsurgical diabetes. C

Diabetes is linked to diseases of the exocrine pancreas such as pancreatitis, which may disrupt the global architecture or physiology of the pancreas, often resulting in both exocrine and endocrine dysfunction. Up to half of patients with diabetes may have impaired exocrine pancreas function (51). People with diabetes are at an approximately twofold higher risk of developing acute pancreatitis (52).

Conversely, prediabetes and/or diabetes has been found to develop in approximately one-third of patients after an episode of acute pancreatitis (53), thus the relationship is likely bidirectional. Postpancreatitis diabetes may include either new-onset disease or previously unrecognized diabetes (54). Studies of patients treated with incretin-based therapies for diabetes have also reported that pancreatitis may occur more frequently with these medications, but results have been mixed (55,56).

Islet autotransplantation should be considered for patients requiring total pancreatectomy for medically refractory chronic pancreatitis to prevent postsurgical diabetes. Approximately one-third of patients undergoing total pancreatectomy with islet autotransplantation are insulin free 1 year postoperatively, and observational studies from different centers have demonstrated islet graft function up to a decade after the surgery in some patients (57–61). Both patient and disease factors should be carefully considered when deciding the indications and timing of this surgery. Surgeons should be performed in skilled facilities that have demonstrated expertise in islet autotransplantation.

Fractures

Age-specific hip fracture risk is significantly increased in people with both...
Patients with HIV should be screened for diabetes and prediabetes with a fasting glucose test before starting antiretroviral therapy, at the time of switching antiretroviral therapy, and 3–6 months after starting or switching antiretroviral therapy. If initial screening results are normal, checking fasting glucose every year is advised.

Diabetes risk is increased with certain protease inhibitors (Pis) and nucleoside reverse transcriptase inhibitors (NRTIs). New-onset diabetes is estimated to occur in more than 5% of patients infected with HIV on PIs, whereas more than 15% may have prediabetes (68). PIs are associated with insulin resistance and may also lead to apoptosis of pancreatic β-cells. NRTIs also affect fat distribution (both lipohypertrophy and lipoatrophy), which is associated with insulin resistance.

Individuals with HIV are at higher risk for developing prediabetes and diabetes on antiretroviral (ARV) therapies, so a screening protocol is recommended (69). The A1C test may underestimate glycemia in people with HIV and is not recommended for diagnosis and may present challenges for monitoring (70). In those with prediabetes, weight loss through healthy nutrition and physical activity may reduce the progression toward diabetes. Among patients with HIV and diabetes, preventive health care using an approach similar to that used in patients without HIV is critical to reduce the risks of microvascular and macrovascular complications.

For patients with HIV and ARV-associated hyperglycemia, it may be appropriate to consider discontinuing the problematic ARV agents if safe and effective alternatives are available (71). Before making ARV substitutions, carefully consider the possible effect on HIV virological control and the potential adverse effects of new ARV agents. In some cases, antihyperglycemia agents may still be necessary.

Hearing Impairment

Hearing impairment, both in high frequency and low/midfrequency ranges, is more common in people with diabetes than in those without, perhaps due to neuropathy and/or vascular disease. In a National Health and Nutrition Examination Survey (NHANES) analysis, hearing impairment was about twice as prevalent in people with diabetes compared with those without, after adjusting for age and other risk factors for hearing impairment (67).

HIV

Recommendation 4.16 Patients with HIV should be screened for diabetes and prediabetes with a fasting glucose test before starting antiretroviral therapy, at the time of switching antiretroviral therapy, and 3–6 months after starting or switching antiretroviral therapy. If initial screening results are normal, checking fasting glucose every year is advised. E

Mean levels of testosterone are lower in men with diabetes compared withagematched men without diabetes, but obesity is a major confounder (72,73). Treatment in asymptomatic men is controversial. Testosterone replacement in men with symptomatic hypogonadism may have benefits including improved sexual function, well-being, muscle mass and strength, and bone density (74). In men with diabetes who have symptoms or signs of low testosterone (hypogonadism), a morning total testosterone should be measured using an accurate and reliable assay. Free or bioavailable testosterone levels should also be measured in men with diabetes who have total testosterone levels close to the lower limit, given expected decreases in sex hormone-binding globulin with diabetes. Further testing (such as luteinizing hormone and follicle-stimulating hormone levels) may be needed to distinguish between primary and secondary hypogonadism.

Obstructive Sleep Apnea

Age-adjusted rates of obstructive sleep apnea, a risk factor for cardiovascular disease, are significantly higher (4- to 10-fold) with obesity, especially with central obesity (75). The prevalence of obstructive sleep apnea in the population with type 2 diabetes may be as high as 23%, and the prevalence of any sleep-disordered breathing may be as high as 58% (76,77). In obese participants enrolled in the Action for Health in Diabetes (Look AHEAD) trial, it exceeded 80% (78). Patients with symptoms suggestive of obstructive sleep apnea (e.g., excessive daytime sleepiness, snoring, witnessed apnea) should be considered for screening (79). Sleep apnea treatment (lifestyle modification, continuous positive airway pressure, oral appliances, and surgery) significantly improves quality of life and blood pressure control. The evidence for a treatment effect on glycemic control is mixed (80).

Periodontal Disease

Periodontal disease is more severe, and may be more prevalent, in patients with diabetes than in those without (81,82). Current evidence suggests that periodontal disease adversely affects diabetes outcomes, although evidence for treatment benefits remains controversial (24).

Psychosocial/Emotional Disorders

Prevalence of clinically significant psychopathology diagnoses are considerably more common in people with diabetes than in those without the disease (83). Symptoms, both clinical and subclinical, that interfere with the person’s ability to carry out daily diabetes self-management tasks must be addressed. Providers should consider an assessment of symptoms of
depression, anxiety, and disordered eating and of cognitive capacities using patient-appropriate standardized/validated tools at the initial visit, at periodic intervals, and when there is a change in disease, treatment, or life circumstance. Including caregivers and family members in this assessment is recommended. Diabetes distress is addressed in Section 5 “Lifestyle Management,” as this state is very common and distinct from the psychological disorders discussed below (84).

Anxiety Disorders

Recommendations

4.18 Consider screening for anxiety in people exhibiting anxiety or worries regarding diabetes complications, insulin injections or infusion, taking medications, and/or hypoglycemia that interfere with self-management behaviors and those who express fear, dread, or irrational thoughts and/or show anxiety symptoms such as avoidance behaviors, excessive repetitive behaviors, or social withdrawal. Refer for treatment if anxiety is present. B

4.19 People with hypoglycemia unawareness, which can co-occur with fear of hypoglycemia, should be treated using blood glucose awareness training (or other evidence-based intervention) to help reestablish awareness of hypoglycemia and reduce fear of hypoglycemia. A

Anxiety symptoms and diagnosable disorders (e.g., generalized anxiety disorder, body dysmorphic disorder, obsessive-compulsive disorder, specific phobias, and posttraumatic stress disorder) are common in people with diabetes (85).

The Behavioral Risk Factor Surveillance System (BRFSS) estimated the lifetime prevalence of generalized anxiety disorder to be 19.5% in people with either type 1 or type 2 diabetes (86). Common diabetes-specific concerns include fears related to hypoglycemia (87, 88), not meeting blood glucose targets (85), and insulin injections or infusion (89). Onset of complications presents another critical point when anxiety can occur (90). People with diabetes who exhibit excessive diabetes self-management behaviors well beyond what is prescribed or needed to achieve glycemic targets may be experiencing symptoms of obsessive-compulsive disorder (91).

General anxiety is a predictor of injection-related anxiety and associated with fear of hypoglycemia (88,92). Fear of hypoglycemia and hypoglycemia unawareness often co-occur, and interventions aimed at treating one often benefit both (93). Fear of hypoglycemia may explain avoidance of behaviors associated with lowering glucose such as increasing insulin doses or frequency of monitoring. If fear of hypoglycemia is identified and a person does not have symptoms of hypoglycemia, a structured program of blood glucose awareness training delivered in routine clinical practice can improve A1C, reduce the rate of severe hypoglycemia, and restore hypoglycemia awareness (94,95).

Depression

Recommendations

4.20 Providers should consider annual screening of all patients with diabetes, especially those with a self-reported history of depression, for depressive symptoms with age-appropriate depression screening measures, recognizing that further evaluation will be necessary for individuals who have a positive screen. B

4.21 Beginning at diagnosis of complications or when there are significant changes in medical status, consider assessment for depression. B

4.22 Referrals for treatment of depression should be made to mental health providers with experience using cognitive behavioral therapy, interpersonal therapy, or other evidence-based treatment approaches in conjunction with collaborative care with the patient’s diabetes treatment team. A

History of depression, current depression, and antidepressant medication use are risk factors for the development of type 2 diabetes, especially if the individual has other risk factors such as obesity and family history of type 2 diabetes (96–98). Elevated depressive symptoms and depressive disorders affect one in four patients with type 1 or type 2 diabetes (99). Thus, routine screening for depressive symptoms is indicated in this high-risk population including people with type 1 or type 2 diabetes, gestational diabetes mellitus, and postpartum diabetes. Regardless of diabetes type, women have significantly higher rates of depression than men (100).

Routine monitoring with patient-appropriate validated measures can help to identify if referral is warranted. Adult patients with a history of depressive symptoms or disorder need ongoing monitoring of depression recurrence within the context of routine care (96). Integrating mental and physical health care can improve outcomes. When a patient is in psychological therapy (talk therapy), the mental health provider should be incorporated into the diabetes treatment team (101).

Disordered Eating Behavior

Recommendations

4.23 Providers should consider reevaluating the treatment regimen of people with diabetes who present with symptoms of disordered eating behavior, an eating disorder, or disrupted patterns of eating. B

4.24 Consider screening for disordered or disrupted eating using validated screening measures when hyperglycemia and weight loss are unexplained based on self-reported behaviors related to medication dosing, meal plan, and physical activity. In addition, a review of the medical regimen is recommended to identify potential treatment-related effects on hunger/caloric intake. B

Estimated prevalence of disordered eating behaviors and diagnosable eating disorders in people with diabetes varies (102–104). For people with type 1 diabetes, insulin omission causing glycosuria in order to lose weight is the most commonly reported disordered eating behavior (105,106); in people with type 2 diabetes, binging (excessive food intake with an accompanying sense of
loss of control) is most commonly reported. For people with type 2 diabetes treated with insulin, intentional omission is also frequently reported (107). People with diabetes and diagnosable eating disorders have high rates of comorbid psychiatric disorders (108). People with type 1 diabetes and eating disorders have high rates of diabetes distress and fear of hypoglycemia (109).

When evaluating symptoms of disordered or disrupted eating in people with diabetes, etiology and motivation for the behavior should be considered (104,110). Adjunctive medication such as glucagon-like peptide 1 receptor agonists (111) may help individuals not only to meet glycemic targets but also to regulate hunger and food intake, thus having the potential to reduce uncontrollable hunger and bulimic symptoms.

Serious Mental Illness

Recommendations

4.25 Annually screen people who are prescribed atypical antipsychotic medications for prediabetes or diabetes.

4.26 If a second-generation antipsychotic medication is prescribed for adolescents or adults with diabetes, changes in weight, glycemic control, and cholesterol levels should be carefully monitored and the treatment regimen should be reassessed.

4.27 Incorporate monitoring of diabetes self-care activities into treatment goals in people with diabetes and serious mental illness.

Studies of individuals with serious mental illness, particularly schizophrenia and other thought disorders, show significantly increased rates of type 2 diabetes (112). People with schizophrenia should be monitored for type 2 diabetes because of the known comorbidity. Disordered thinking and judgment can be expected to make it difficult to engage in behaviors that reduce risk factors for type 2 diabetes, such as restrained eating for weight management. Coordinated management of diabetes or prediabetes and serious mental illness is recommended to achieve diabetes treatment targets. In addition, those taking second-generation (atypical) antipsychotics, such as olanzapine, require greater monitoring because of an increase in risk of type 2 diabetes associated with this medication (113).

References

S44 Comprehensive Medical Evaluation and Assessment of Comorbidities

American Gastroenterological Association

medical position statement: nonalcoholic fatty liver disease. Gastroenterology 2002;123:1702–1704

5. Lifestyle Management: Standards of Medical Care in Diabetes—2019

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

Lifestyle management is a fundamental aspect of diabetes care and includes diabetes self-management education and support (DSMES), medical nutrition therapy (MNT), physical activity, smoking cessation counseling, and psychosocial care. Patients and care providers should focus together on how to optimize lifestyle from the time of the initial comprehensive medical evaluation, throughout all subsequent evaluations and follow-up, and during the assessment of complications and management of co-morbid conditions in order to enhance diabetes care.

DIABETES SELF-MANAGEMENT EDUCATION AND SUPPORT

Recommendations

5.1 In accordance with the national standards for diabetes self-management education and support, all people with diabetes should participate in diabetes self-management education to facilitate the knowledge, skills, and ability necessary for diabetes self-care. Diabetes self-management support is additionally recommended to assist with implementing and sustaining skills and behaviors needed for ongoing self-management. **B**

5.2 There are four critical times to evaluate the need for diabetes self-management education and support: at diagnosis, annually, when complicating factors arise, and when transitions in care occur. **E**

5.3 Clinical outcomes, health status, and quality of life are key goals of diabetes self-management education and support that should be measured as part of routine care. **C**

5.4 Diabetes self-management education and support should be patient centered, may be given in group or individual settings or using technology, and should be communicated with the entire diabetes care team. **A**

5.5 Because diabetes self-management education and support can improve outcomes and reduce costs **B**, adequate reimbursement by third-party payers is recommended. **E**

Suggested citation: American Diabetes Association. 5. Lifestyle management: Standards of Medical Care in Diabetes—2019. Diabetes Care 2019;42(Suppl. 1):S46–S60 © 2018 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.
DSMES services facilitate the knowledge, skills, and abilities necessary for optimal diabetes self-care and incorporate the needs, goals, and life experiences of the person with diabetes. The overall objectives of DSMES are to support informed decision making, self-care behaviors, problem-solving, and active collaboration with the health care team to improve clinical outcomes, health status, and quality of life in a cost-effective manner (1). Providers are encouraged to consider the burden of treatment and the patient’s level of confidence/self-efficacy for management behaviors as well as the level of social and family support when providing DSMES. Patient performance of self-management behaviors, including its effect on clinical outcomes, health status, and quality of life, as well as the psychosocial factors impacting the person’s self-management should be monitored as part of routine clinical care.

In addition, in response to the growing literature that associates potentially judgmental words with increased feelings of shame and guilt, providers are encouraged to consider the impact that language has on building therapeutic relationships and to choose positive, strength-based words and phrases that put people first (2,3). Patient performance of self-management behaviors as well as psychosocial factors impacting the person’s self-management should be monitored. Please see Section 4, “Comprehensive Medical Evaluation and Assessment of Comorbidities,” for more on use of language.

DSMES and the current national standards guiding it (1,4) are based on evidence of benefit. Specifically, DSMES helps people with diabetes to identify and implement effective self-management strategies and cope with diabetes at the four critical time points (described below) (1). Ongoing DSMES helps people with diabetes to maintain effective self-management throughout a lifetime of diabetes as they face new challenges and as advances in treatment become available (5).

Four critical time points have been defined when the need for DSMES is to be evaluated by the medical care provider and/or multidisciplinary team, with referrals made as needed (1):

1. At diagnosis
2. Annually for assessment of education, nutrition, and emotional needs
3. When new complicating factors (health conditions, physical limitations, emotional factors, or basic living needs) arise that influence self-management
4. When transitions in care occur

DSMES focuses on supporting patient empowerment by providing people with diabetes the tools to make informed self-management decisions (6). Diabetes care has shifted to an approach that places the person with diabetes and his or her family at the center of the care model, working in collaboration with health care professionals. Patient-centered care is respectful of and responsive to individual patient preferences, needs, and values. It ensures that patient values guide all decision making (7).

Evidence for the Benefits
Studies have found that DSMES is associated with improved diabetes knowledge and self-care behaviors (8), lower A1C (7,9–11), lower self-reported weight (12,13), improved quality of life (10,14), reduced all-cause mortality risk (15), healthy coping (16,17), and reduced health care costs (18–20). Better outcomes were reported for DSMES interventions that were over 10 h in total duration (11), included ongoing support (5,21), were culturally (22,23) and age appropriate (24,25), were tailored to individual needs and preferences, and addressed psychosocial issues and incorporated behavioral strategies (6,16,26,27). Individual and group approaches are effective (13,28,29), with a slight benefit realized by those who engage in both (11). Emerging evidence demonstrates the benefit of Internet-based DSMES services for diabetes prevention and the management of type 2 diabetes (30–32). Technology-enabled diabetes self-management solutions improve A1C most effectively when there is two-way communication between the patient and the health care team, individualized feedback, use of patient-generated health data, and education (32). Current research supports nurses, dietitians, and pharmacists as providers of DSMES who may also develop curriculum (33–35). Members of the DSMES team should have specialized clinical knowledge in diabetes and behavior change principles. Certification as a certified diabetes educator (CDE) or board certified-advanced diabetes management (BC-ADM) certification demonstrates specialized training and mastery of a specific body of knowledge (4). Additionally, there is growing evidence for the role of community health workers (36,37), as well as peer (36–40) and lay leaders (41), in providing ongoing support.

DSMES is associated with an increased use of primary care and preventive services (18,42,43) and less frequent use of acute care and inpatient hospital services (12). Patients who participate in DSMES are more likely to follow best practice treatment recommendations, particularly among the Medicare population, and have lower Medicare and insurance claim costs (19,42). Despite these benefits, reports indicate that only 5–7% of individuals eligible for DSMES through Medicare or a private insurance plan actually receive it (44,45). This low participation may be due to lack of referral or other identified barriers such as logistical issues (timing, costs) and the lack of a perceived benefit (46). Thus, in addition to educating referring providers about the benefits of DSMES and the critical times to refer (1), alternative and innovative models of DSMES delivery need to be explored and evaluated.

Reimbursement
Medicare reimburses DSMES when that service meets the national standards (1,4) and is recognized by the American Diabetes Association (ADA) or other approval bodies. DSMES is also covered by most health insurance plans. Ongoing support has been shown to be instrumental for improving outcomes when it is implemented after the completion of education services. DSMES is frequently reimbursed when performed in person. However, although DSMES can also be provided via phone calls and telehealth, these remote versions may not always be reimbursed. Changes in reimbursement policies that increase DSMES access and utilization will result in a positive impact to beneficiaries’ clinical outcomes, quality of life, health care utilization, and costs (47).

NUTRITION THERAPY
For many individuals with diabetes, the most challenging part of the treatment plan is determining what to eat and following a meal plan. There is not a one-size-fits-all eating pattern for individuals
with diabetes, and meal planning should be individualized. Nutrition therapy has an integral role in overall diabetes management, and each person with diabetes should be actively engaged in education, self-management, and treatment planning with his or her health care team, including the collaborative development of an individualized eating plan (35,48). All individuals with diabetes should be offered a referral for individualized MNT provided by a registered dietitian (RD) who is knowledgeable and skilled in providing diabetes-specific MNT (49). MNT delivered by an RD is associated with A1C decreases of 1.0–1.9% for people with type 1 diabetes (50) and 0.3–2% for people with type 2 diabetes (50). See Table 5.1 for specific nutrition recommendations. Because of the progressive nature of type 2 diabetes, lifestyle changes alone may not be adequate to maintain euglycemia over time. However, after medication is initiated, nutrition therapy continues to be an important component and should be integrated with the overall treatment plan (48).

Goals of Nutrition Therapy for Adults With Diabetes

1. To promote and support healthful eating patterns, emphasizing a variety of nutrient-dense foods in appropriate portion sizes, to improve overall health and:
 ○ Achieve and maintain body weight goals
 ○ Attain individualized glycemic, blood pressure, and lipid goals
 ○ Delay or prevent the complications of diabetes
2. To address individual nutrition needs based on personal and cultural preferences, health literacy and numeracy, access to healthful foods, willingness and ability to make behavioral changes, and barriers to change
3. To maintain the pleasure of eating by providing nonjudgmental messages about food choices
4. To provide an individual with diabetes the practical tools for developing healthy eating patterns rather than focusing on individual macronutrients, micronutrients, or single foods

Eating Patterns, Macronutrient Distribution, and Meal Planning

Evidence suggests that there is not an ideal percentage of calories from carbohydrate, protein, and fat for all people with diabetes. Therefore, macronutrient distribution should be based on an individualized assessment of current eating patterns, preferences, and metabolic goals. Consider personal preferences (e.g., tradition, culture, religion, health beliefs and goals, economics) as well as metabolic goals when working with individuals to determine the best eating pattern for them (35,51,52). It is important that each member of the health care team be knowledgeable about nutrition therapy principles for people with all types of diabetes and be supportive of their implementation. Emphasis should be on healthful eating patterns containing nutrient-dense foods, with less focus on specific nutrients (53). A variety of eating patterns are acceptable for the management of diabetes (51,54), and a referral to an RD or registered dietitian nutritionist (RDN) is essential to assess the overall nutrition status of, and to work collaboratively with, the patient to create a personalized meal plan that considers the individual’s health status, skills, resources, food preferences, and health goals to coordinate and align with the overall treatment plan including physical activity and medication. The Mediterranean (55,56), Dietary Approaches to Stop Hypertension (DASH) (57–59), and plant-based (60,61) diets are all examples of healthful eating patterns that have shown positive results in research, but individualized meal planning should focus on personal preferences, needs, and goals. In addition, research indicates that low-carbohydrate eating plans may result in improved glycemia and have the potential to reduce antihyperglycemic medications for individuals with type 2 diabetes (62–64). As research studies on some low-carbohydrate eating plans generally indicate challenges with long-term sustainability, it is important to reassess and individualize meal plan guidance regularly for those interested in this approach. This meal plan is not recommended at this time for women who are pregnant or lactating, people with or at risk for disordered eating, or people who have renal disease, and it should be used with caution in patients taking sodium–glucose cotransporter 2 (SGLT2) inhibitors due to the potential risk of ketoacidosis (65,66). There is inadequate research in type 1 diabetes to support one eating plan over another at this time.

A simple and effective approach to glycemia and weight management emphasizing portion control and healthy food choices should be considered for those with type 2 diabetes who are not taking insulin, who have limited health literacy or numeracy, or who are older and prone to hypoglycemia (50). The diabetes plate method is commonly used for providing basic meal planning guidance (67) as it provides a visual guide showing how to control calories (by featuring a smaller plate) and carbohydrates (by limiting them to what fits in one-quarter of the plate) and puts an emphasis on low-carbohydrate (or non-starchy) vegetables.

Weight Management

Management and reduction of weight is important for people with type 1 diabetes, type 2 diabetes, or prediabetes who have overweight or obesity. Lifestyle intervention programs should be intensive and have frequent follow-up to achieve significant reductions in excess body weight and improve clinical indicators. There is strong and consistent evidence that modest persistent weight loss can delay the progression from prediabetes to type 2 diabetes (51,68,69) (see Section 3 “Prevention or Delay of Type 2 Diabetes”) and is beneficial to the management of type 2 diabetes (see Section 8 “Obesity Management for the Treatment of Type 2 Diabetes”).

Studies of reduced calorie interventions show reductions in A1C of 0.3% to 2.0% in adults with type 2 diabetes, as well as improvements in medication doses and quality of life (50,51). Sustained weight loss can be challenging (70,71) but has long-term benefits; maintaining weight loss for 5 years is associated with sustained improvements in A1C and lipid levels (72). Weight loss can be attained with lifestyle programs that achieve a 500–750 kcal/day energy deficit or provide ~1,200–1,500 kcal/day for women and 1,500–1,800 kcal/day for men, adjusted for the individual’s baseline body weight. For many obese individuals with type 2 diabetes, weight loss of at least 5% is needed to produce beneficial outcomes in glycemic control, lipids, and blood pressure (70). It should be noted, however, that the
For individuals whose daily insulin dosing is
A simple and effective approach to glycemia and weight management emphasizing portion control and should minimize the consumption of foods with added sugar that have the
Alcohol consumption may place people with diabetes at increased risk for hypoglycemia, especially
Eating foods rich in long-chain n-3 fatty acids, such as fatty
There is no single ideal dietary distribution of calories among carbohydrates, fats, and proteins for
Data on the ideal total dietary fat content for people with diabetes are inconclusive, so an eating
A variety of eating patterns are acceptable for the management of type 2 diabetes and prediabetes.
Weight loss (>-5%) achievable by the combination of reduction of calorie intake and lifestyle
There is no single ideal dietary distribution of calories among carbohydrates, fats, and proteins for
Carbohydrate intake should emphasize nutrient-dense carbohydrate sources that are high in fiber, including vegetables, fruits, legumes, whole grains, as well as dairy products.
For people with type 1 diabetes and those with type 2 diabetes who are prescribed a flexible insulin therapy program, education on how to use carbohydrate counting A and in some cases how to consider fat and protein content B to determine mealtime insulin dosing is recommended to improve glycemic control.
For individuals whose daily insulin dosing is fixed, a consistent pattern of carbohydrate intake with respect to time and amount may be recommended to improve glycemic control and reduce the risk of hypoglycemia.
People with diabetes and those at risk are advised to avoid sugar-sweetened beverages (including fruit juices) in order to control glycemia and weight and reduce their risk for cardiovascular disease and fatty liver B and should minimize the consumption of foods with added sugar that have the capacity to displace healthier, more nutrient-dense food choices.
In individuals with type 2 diabetes, ingested protein appears to increase insulin response without increasing plasma glucose concentrations. Therefore, carbohydrate sources high in protein should be avoided when trying to treat or prevent hypoglycemia.
Data on the ideal total dietary fat content for people with diabetes are inconclusive, so an eating plan emphasizing elements of a Mediterranean-style diet rich in monounsaturated and polyunsaturated fats may be considered to improve glucose metabolism and lower cardiovascular disease risk and can be an effective alternative to a diet low in total fat but relatively high in carbohydrates.
Eating foods rich in long-chain n-3 fatty acids, such as fatty fish (EPA and DHA) and nuts and seeds (ALA), is recommended to prevent or treat cardiovascular disease B; however, evidence does not support a beneficial role for the routine use of n-3 dietary supplements.
There is no clear evidence that dietary supplementation with vitamins, minerals (such as chromium and vitamin D), herbs, or spices (such as cinnamon or aloe vera) can improve outcomes in people with diabetes who do not have underlying deficiencies and they are not generally recommended for glycemic control.
Adults with diabetes who drink alcohol should do so in moderation (no more than one drink per day for adult women and no more than two drinks per day for adult men).
Alcohol consumption may place people with diabetes at increased risk for hypoglycemia, especially if taking insulin or insulin secretagogues. Education and awareness regarding the recognition and management of delayed hypoglycemia are warranted.
As for the general population, people with diabetes should limit sodium consumption to<2,300 mg/day.
The use of nonnutritive sweeteners may have the potential to reduce overall calorie and carbohydrate intake if substituted for caloric (sugar) sweeteners and without compensation by intake of additional calories from other food sources. For those who consume sugar-sweetened beverages regularly, a low-calorie or nonnutritive-sweetened beverage may serve as a short-term replacement strategy, but overall, people are encouraged to decrease both sweetened and nonnutritive-sweetened beverages and use other alternatives, with an emphasis on water intake.

Table 5.1—Medical nutrition therapy recommendations

<table>
<thead>
<tr>
<th>Topic</th>
<th>Recommendations</th>
<th>Evidence rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effectiveness of nutrition therapy</td>
<td>5.6 An individualized medical nutrition therapy program as needed to achieve treatment goals, preferably provided by a registered dietitian, is recommended for all people with type 1 or type 2 diabetes, prediabetes, and gestational diabetes mellitus.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>5.7 A simple and effective approach to glycemia and weight management emphasizing portion control and healthy food choices may be considered for those with type 2 diabetes who are not taking insulin, who have limited health literacy or numeracy, or who are older and prone to hypoglycemia.</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>5.8 Because diabetes nutrition therapy can result in cost savings B and improved outcomes (e.g., A1C reduction) A, medical nutrition therapy should be adequately reimbursed by insurance and other payers.</td>
<td>B, A, E</td>
</tr>
<tr>
<td>Energy balance</td>
<td>5.9 Weight loss (>5%) achievable by the combination of reduction of calorie intake and lifestyle modification benefits overweight or obese adults with type 2 diabetes and also those with prediabetes. Intervention programs to facilitate weight loss are recommended.</td>
<td>A</td>
</tr>
<tr>
<td>Eating patterns and macronutrient distribution</td>
<td>5.10 There is no single ideal dietary distribution of calories among carbohydrates, fats, and proteins for people with diabetes; therefore, meal plans should be individualized while keeping total calorie and metabolic goals in mind.</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>5.11 A variety of eating patterns are acceptable for the management of type 2 diabetes and prediabetes.</td>
<td>B</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>5.12 Carbohydrate intake should emphasize nutrient-dense carbohydrate sources that are high in fiber, including vegetables, fruits, legumes, whole grains, as well as dairy products.</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>5.13 For people with type 1 diabetes and those with type 2 diabetes who are prescribed a flexible insulin therapy program, education on how to use carbohydrate counting A and in some cases how to consider fat and protein content B to determine mealtime insulin dosing is recommended to improve glycemic control.</td>
<td>A, B</td>
</tr>
<tr>
<td></td>
<td>5.14 For individuals whose daily insulin dosing is fixed, a consistent pattern of carbohydrate intake with respect to time and amount may be recommended to improve glycemic control and reduce the risk of hypoglycemia.</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>5.15 People with diabetes and those at risk are advised to avoid sugar-sweetened beverages (including fruit juices) in order to control glycemia and weight and reduce their risk for cardiovascular disease and fatty liver B and should minimize the consumption of foods with added sugar that have the capacity to displace healthier, more nutrient-dense food choices.</td>
<td>B, A</td>
</tr>
<tr>
<td>Protein</td>
<td>5.16 In individuals with type 2 diabetes, ingested protein appears to increase insulin response without increasing plasma glucose concentrations. Therefore, carbohydrate sources high in protein should be avoided when trying to treat or prevent hypoglycemia.</td>
<td>B</td>
</tr>
<tr>
<td>Dietary fat</td>
<td>5.17 Data on the ideal total dietary fat content for people with diabetes are inconclusive, so an eating plan emphasizing elements of a Mediterranean-style diet rich in monounsaturated and polyunsaturated fats may be considered to improve glucose metabolism and lower cardiovascular disease risk and can be an effective alternative to a diet low in total fat but relatively high in carbohydrates.</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>5.18 Eating foods rich in long-chain n-3 fatty acids, such as fatty fish (EPA and DHA) and nuts and seeds (ALA), is recommended to prevent or treat cardiovascular disease B; however, evidence does not support a beneficial role for the routine use of n-3 dietary supplements.</td>
<td>B, A</td>
</tr>
<tr>
<td>Micronutrients and herbal supplements</td>
<td>5.19 There is no clear evidence that dietary supplementation with vitamins, minerals (such as chromium and vitamin D), herbs, or spices (such as cinnamon or aloe vera) can improve outcomes in people with diabetes who do not have underlying deficiencies and they are not generally recommended for glycemic control.</td>
<td>C</td>
</tr>
<tr>
<td>Alcohol</td>
<td>5.20 Adults with diabetes who drink alcohol should do so in moderation (no more than one drink per day for adult women and no more than two drinks per day for adult men).</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>5.21 Alcohol consumption may place people with diabetes at increased risk for hypoglycemia, especially if taking insulin or insulin secretagogues.</td>
<td>B</td>
</tr>
<tr>
<td>Sodium</td>
<td>5.22 As for the general population, people with diabetes should limit sodium consumption to<2,300 mg/day.</td>
<td>B</td>
</tr>
<tr>
<td>Nonnutritive sweeteners</td>
<td>5.23 The use of nonnutritive sweeteners may have the potential to reduce overall calorie and carbohydrate intake if substituted for caloric (sugar) sweeteners and without compensation by intake of additional calories from other food sources. For those who consume sugar-sweetened beverages regularly, a low-calorie or nonnutritive-sweetened beverage may serve as a short-term replacement strategy, but overall, people are encouraged to decrease both sweetened and nonnutritive-sweetened beverages and use other alternatives, with an emphasis on water intake.</td>
<td>B</td>
</tr>
</tbody>
</table>

clinical benefits of weight loss are progressive and more intensive weight loss goals (i.e., 15%) may be appropriate to maximize benefit depending on need, feasibility, and safety (73). MNT guidance from an RD/RDN with expertise in diabetes and weight management, throughout the course of a structured weight loss plan, is strongly recommended. Studies have demonstrated that a variety of eating plans, varying in
macronutrient composition, can be used effectively and safely in the short term (1–2 years) to achieve weight loss in people with diabetes. This includes structured low-calorie meal plans that include meal replacements (72–74) and the Mediterranean eating pattern (75) as well as low-carbohydrate meal plans (62). However, no single approach has been proven to be consistently superior (76,77), and more data are needed to identify and validate those meal plans that are optimal with respect to long-term outcomes as well as patient acceptability. The importance of providing guidance on an individualized meal plan containing nutrient-dense foods, such as vegetables, fruits, legumes, dairy, lean sources of protein (including plant-based sources as well as lean meats, fish, and poultry), nuts, seeds, and whole grains, cannot be overemphasized (77), as well as guidance on achieving the desired energy deficit (78–81). Any approach to meal planning should be individualized considering the health status, personal preferences, and ability of the person with diabetes to sustain the recommendations in the plan.

Carbohydrates
Studies examining the ideal amount of carbohydrate intake for people with diabetes are inconclusive, although monitoring carbohydrate intake and considering the blood glucose response to dietary carbohydrate are key for improving postprandial glucose control (82,83). The literature concerning glycemic index and glycemic load in individuals with diabetes is complex, often yielding mixed results, though in some studies lowering the glycemic load of consumed carbohydrates has demonstrated A1C reductions of 0.2% to 0.5% (84,85). Studies longer than 12 weeks report no significant influence of glycemic index or glycemic load independent of weight loss on A1C; however, mixed results have been reported for fasting glucose levels and endogenous insulin levels.

For people with type 2 diabetes or prediabetes, low-carbohydrate eating plans show potential to improve glycemia and lipid outcomes for up to 1 year (62–64,86–89). Part of the challenge in interpreting low-carbohydrate research has been due to the wide range of definitions for a low-carbohydrate eating plan (85,86). As research studies on low-carbohydrate eating plans generally indicate challenges with long-term sustainability, it is important to reassess and individualize meal plan guidance regularly for those interested in this approach. Providers should maintain consistent medical oversight and recognize that certain groups are not appropriate for low-carbohydrate eating plans, including women who are pregnant or lactating, children, and people who have renal disease or disordered eating behavior, and these plans should be used with caution for those taking SGLT2 inhibitors due to potential risk of ketoacidosis (65,66). There is inadequate research about dietary patterns for type 1 diabetes to support one eating plan over another at this time.

Most individuals with diabetes report a moderate intake of carbohydrate (44–46% of total calories) (51). Efforts to modify habitual eating patterns are often unsuccessful in the long term; people generally go back to their usual macronutrient distribution (51). Thus, the recommended approach is to individualize meal plans to meet caloric goals with a macronutrient distribution that is more consistent with the individual’s usual intake to increase the likelihood for long-term maintenance.

As for all individuals in developed countries, both children and adults with diabetes are encouraged to minimize intake of refined carbohydrates and added sugars and instead focus on carbohydrates from vegetables, legumes, fruits, dairy (milk and yogurt), and whole grains. The consumption of sugar-sweetened beverages (including fruit juices) and processed “low-fat” or “nonfat” food products with high amounts of refined grains and added sugars is strongly discouraged (90–92).

Individuals with type 1 or type 2 diabetes taking insulin at mealtime should be offered intensive and ongoing education on the need to couple insulin administration with carbohydrate intake. For people whose meal schedule or carbohydrate consumption is variable, regular counseling to help them understand the complex relationship between carbohydrate intake and insulin needs is important. In addition, education on using the insulin-to-carbohydrate ratios for meal planning can assist them with effectively modifying insulin dosing from meal to meal and improving glycemic control (51,82,93–96). Individuals who consume meals containing more protein and fat than usual may also need to make mealtime insulin dose adjustments to compensate for delayed postprandial glyceremic excursions (97–99). For individuals on a fixed daily insulin schedule, meal planning should emphasize a relatively fixed carbohydrate consumption pattern with respect to both time and amount (35).

Protein
There is no evidence that adjusting the daily level of protein intake (typically 1–1.5 g/kg body weight/day or 15–20% total calories) will improve health in individuals without diabetic kidney disease, and research is inconclusive regarding the ideal amount of dietary protein to optimize either glycemic control or cardiovascular disease (CVD) risk (84,100). Therefore, protein intake goals should be individualized based on current eating patterns. Some research has found successful management of type 2 diabetes with meal plans including slightly higher levels of protein (20–30%), which may contribute to increased satiety (58).

Those with diabetic kidney disease (with albuminuria and/or reduced estimated glomerular filtration rate) should aim to maintain dietary protein at the recommended daily allowance of 0.8 g/kg body weight/day. Reducing the amount of dietary protein below the recommended daily allowance is not recommended because it does not alter glycemic measures, cardiovascular risk measures, or the rate at which glomerular filtration rate declines (101,102).

In individuals with type 2 diabetes, protein intake may enhance or increase the insulin response to dietary carbohydrates (103). Therefore, use of carbohydrate sources high in protein (such as milk and nuts) to treat or prevent hypoglycemia should be avoided due to the potential concurrent rise in endogenous insulin.

Fats
The ideal amount of dietary fat for individuals with diabetes is controversial. The National Academy of Medicine has defined an acceptable macronutrient distribution for total fat for all adults to be 20–35% of total calorie intake (104). The type of fats consumed is more
important than total amount of fat when looking at metabolic goals and CVD risk, and it is recommended that the percentage of total calories from saturated fats should be limited (75,90,105–107). Multiple randomized controlled trials including patients with type 2 diabetes have reported that a Mediterranean-style eating pattern (75,108–113), rich in polyunsaturated and monounsaturated fats, can improve both glycemic control and blood lipids. However, supplements do not seem to have the same effects as their whole-food counterparts. A systematic review concluded that dietary supplements with n-3 fatty acids did not improve glycemic control in individuals with type 2 diabetes (84). Randomized controlled trials also do not support recommending n-3 supplements for primary or secondary prevention of CVD (114–118). People with diabetes should be advised to follow the guidelines for the general population for the recommended intakes of saturated fat, dietary cholesterol, and trans fat (90). In general, trans fats should be avoided. In addition, as saturated fats are progressively decreased in the diet, they should be replaced with unsaturated fats and not with refined carbohydrates (112).

Sodium
As for the general population, people with diabetes are advised to limit their sodium consumption to <2,300 mg/day (35). Restriction below 1,500 mg, even for those with hypertension, is generally not recommended (119–121). Sodium intake recommendations should take into account palatability, availability, affordability, and the difficulty of achieving low-sodium recommendations in a nutritionally adequate diet (122).

Micronutrients and Supplements
There continues to be no clear evidence of benefit from herbal or nonherbal (i.e., vitamin or mineral) supplementation for people with diabetes without underlying deficiencies (35). Metformin is associated with vitamin B12 deficiency, with a recent report from the Diabetes Prevention Program Outcomes Study (DPPOS) suggesting that periodic testing of vitamin B12 levels should be considered in patients taking metformin, particularly in those with anemia or peripheral neuropathy (123). Routine supplementation with antioxidants, such as vitamins E and C and carotene, is not advised due to lack of evidence of efficacy and concern related to long-term safety. In addition, there is insufficient evidence to support the routine use of herbs and micronutrients, such as cinnamon (124), curcumin, vitamin D (125), or chromium, to improve glycemia in people with diabetes (35,126). However, for special populations, including pregnant or lactating women, older adults, vegetarians, and people following very low-calorie or low-carbohydrate diets, a multivitamin may be necessary.

Alcohol
Moderate alcohol intake does not have major detrimental effects on long-term blood glucose control in people with diabetes. Risks associated with alcohol consumption include hypoglycemia (particularly for those using insulin or insulin secretagogue therapies), weight gain, and hyperglycemia (for those consuming excessive amounts) (35,126). People with diabetes can follow the same guidelines as those without diabetes if they choose to drink. For women, no more than one drink per day, and for men, no more than two drinks per day is recommended (one drink is equal to a 12-oz beer, a 5-oz glass of wine, or 1.5 oz of distilled spirits).

Nonnutritive Sweeteners
For some people with diabetes who are accustomed to sugar-sweetened products, nonnutritive sweeteners (containing few or no calories) may be an acceptable substitute for nutritive sweeteners (those containing calories such as sugar, honey, agave syrup) when consumed in moderation. While use of nonnutritive sweeteners does not appear to have a significant effect on glycemic control (127), they can reduce overall calorie and carbohydrate intake (51). Most systematic reviews and meta-analyses show benefits for nonnutritive sweetener use in weight loss (128,129); however, some research suggests an association with weight gain (130). Regulatory agencies set acceptable daily intake levels for each nonnutritive sweetener, defined as the amount that can be safely consumed over a person’s lifetime (35,131). For those who consume sugar-sweetened beverages regularly, a low-calorie or nonnutritive-sweetened beverage may serve as a short-term replacement strategy, but overall, people are encouraged to decrease both sweetened and nonnutritive-sweetened beverages and use other alternatives, with an emphasis on water intake (132).

PHYSICAL ACTIVITY

Recommendations

5.24 Children and adolescents with type 1 or type 2 diabetes or prediabetes should engage in 60 min/day or more of moderate- or vigorous-intensity aerobic activity, with vigorous muscle-strengthening and bone-strengthening activities at least 3 days/week. C

5.25 Most adults with type 1 C and type 2 B diabetes should engage in 150 min or more of moderate-to-vigorous intensity aerobic activity per week, spread over at least 3 days/week, with no more than 2 consecutive days without activity. Shorter durations (minimum 75 min/week) of vigorous-intensity or interval training may be sufficient for younger and more physically fit individuals. B

5.26 Adults with type 1 C and type 2 B diabetes should engage in 2–3 sessions/week of resistance exercise on nonconsecutive days. C

5.27 All adults, and particularly those with type 2 diabetes, should decrease the amount of time spent in daily sedentary behavior. B Prolonged sitting should be interrupted every 30 min for blood glucose benefits, particularly in adults with type 2 diabetes. C

5.28 Flexibility training and balance training are recommended 2–3 times/week for older adults with diabetes. Yoga and tai chi may be included based on individual preferences to increase flexibility, muscular strength, and balance. C

Physical activity is a general term that includes all movement that increases energy use and is an important part of the diabetes management plan. Exercise is a more specific form of physical activity that is structured and designed to improve physical fitness. Both physical activity and exercise are important.
Exercise has been shown to improve blood glucose control, reduce cardiovascular risk factors, contribute to weight loss, and improve well-being (133). Physical activity is as important for those with type 1 diabetes as it is for the general population, but its specific role in the prevention of diabetes complications and the management of blood glucose is not as clear as it is for those with type 2 diabetes. A recent study suggested that the percentage of people with diabetes who achieved the recommended exercise level per week (150 min) varied by race. Objective measurement by accelerometer showed that 44.2%, 42.6%, and 65.1% of whites, African Americans, and Hispanics, respectively, met the threshold (134). It is important for diabetes care management teams to understand the difficulty that many patients have reaching recommended treatment targets and to identify individualized approaches to improve goal achievement.

Moderate to high volumes of aerobic activity are associated with substantially lower cardiovascular and overall mortality risks in both type 1 and type 2 diabetes (135). A recent prospective observational study of adults with type 1 diabetes suggested that higher amounts of physical activity led to reduced cardiovascular mortality after a mean follow-up time of 11.4 years for patients with and without chronic kidney disease (136). Additionally, structured exercise interventions of at least 8 weeks’ duration have been shown to lower A1C by an average of 0.66% in people with type 2 diabetes, even without a significant change in BMI (137). There are also considerable data for the health benefits (e.g., increased cardiovascular fitness, greater muscle strength, improved insulin sensitivity, etc.) of regular exercise for those with type 1 diabetes (138). A recent study suggested that exercise training in type 1 diabetes may also improve several important markers such as triglyceride level, LDL, waist circumference, and body mass (139). Higher levels of exercise intensity are associated with greater improvements in A1C and in fitness (140). Other benefits include slowing the decline in mobility among overweight patients with diabetes (141). The ADA position statement “Physical Activity/Exercise and Diabetes” reviews the evidence for the benefits of exercise in people with type 1 and type 2 diabetes and offers specific recommendation (142).

Exercise and Children
All children, including children with diabetes or prediabetes, should be encouraged to engage in regular physical activity. Children should engage in at least 60 min of moderate-to-vigorous aerobic activity every day with muscle- and bone-strengthening activities at least 3 days per week (143). In general, youth with type 1 diabetes benefit from being physically active, and an active lifestyle should be recommended to all (144). Youth with type 1 diabetes who engage in more physical activity may have better health-related quality of life (145).

Frequency and Type of Physical Activity
People with diabetes should perform aerobic and resistance exercise regularly (142). Aerobic activity bouts should ideally last at least 10 min, with the goal of ~30 min/day or more, most days of the week for adults with type 2 diabetes. Daily exercise, or at least not allowing more than 2 days to elapse between exercise sessions, is recommended to decrease insulin resistance, regardless of diabetes type (146,147). Over time, activities should progress in intensity, frequency, and/or duration to at least 150 min/week of moderate-intensity exercise. Adults able to run at 6 miles/h (9.7 km/h) for at least 25 min can benefit sufficiently from shorter-intensity activity (75 min/week) (142). Many adults, including most with type 2 diabetes, would be unable or unwilling to participate in such intense exercise and should engage in moderate exercise for the recommended duration. Adults with diabetes should engage in 2–3 sessions/week of resistance exercise on nonconsecutive days (148). Although heavier resistance training with free weights and weight machines may improve glycemic control and strength (149), resistance training of any intensity is recommended to improve strength, balance, and the ability to engage in activities of daily living throughout the life span. Providers and staff should help patients set stepwise goals toward meeting the recommended exercise targets.

Recent evidence supports that all individuals, including those with diabetes, should be encouraged to reduce the amount of time spent being sedentary (e.g., working at a computer, watching TV) by breaking up bouts of sedentary activity (>30 min) by briefly standing, walking, or performing other light physical activities (150,151). Avoiding extended sedentary periods may help prevent type 2 diabetes for those at risk and may also aid in glycemic control for those with diabetes.

A wide range of activities, including yoga, tai chi, and other types, can have significant impacts on A1C, flexibility, muscle strength, and balance (133,152,153). Flexibility and balance exercises may be particularly important in older adults with diabetes to maintain range of motion, strength, and balance (142).

Physical Activity and Glycemic Control
Clinical trials have provided strong evidence for the A1C-lowering value of resistance training in older adults with type 2 diabetes (154) and for an additive benefit of combined aerobic and resistance exercise in adults with type 2 diabetes (155). If not contraindicated, patients with type 2 diabetes should be encouraged to do at least two weekly sessions of resistance exercise (exercise with free weights or weight machines), with each session consisting of at least one set (group of consecutive repetitive exercise motions) of five or more different resistance exercises involving the large muscle groups (154).

For type 1 diabetes, although exercise in general is associated with improvement in disease status, care needs to be taken in titrating exercise with respect to glycemic management. Each individual with type 1 diabetes has a variable glycemic response to exercise. This variability should be taken into consideration when recommending the type and duration of exercise for a given individual (138).

Women with preexisting diabetes, particularly type 2 diabetes, and those at risk for or presenting with gestational diabetes mellitus should be advised to engage in regular moderate physical activity prior to and during their pregnancies as tolerated (142).

Pre-exercise Evaluation
As discussed more fully in Section 10 “Cardiovascular Disease and Risk
Management,” the best protocol for assessing asymptomatic patients with diabetes for coronary artery disease remains unclear. The ADA consensus report “Screening for Coronary Artery Disease in Patients With Diabetes” (156) concluded that routine testing is not recommended. However, providers should perform a careful history, assess cardiovascular risk factors, and be aware of the atypical presentation of coronary artery disease in patients with diabetes. Certainly, high-risk patients should be encouraged to start with short periods of low-intensity exercise and slowly increase the intensity and duration as tolerated. Providers should assess patients for conditions that might contraindicate certain types of exercise or predispose to injury, such as uncontrolled hypertension, untreated proliferative retinopathy, autonomic neuropathy, peripheral neuropathy, and a history of foot ulcers or Charcot foot. The patient’s age and previous physical activity level should be considered. The provider should customize the exercise regimen to the individual’s needs. Those with complications may require a more thorough evaluation prior to beginning an exercise program (138).

Hypoglycemia

In individuals taking insulin and/or insulin secretagogues, physical activity may cause hypoglycemia if the medication dose or carbohydrate consumption is not altered. Individuals on these therapies may need to ingest some added carbohydrate if pre-exercise glucose levels are <90 mg/dL (5.0 mmol/L), depending on whether they are able to lower insulin doses during the workout (such as with an insulin pump or reduced pre-exercise insulin dosage), the time of day exercise is done, and the intensity and duration of the activity (138,142). In some patients, hypoglycemia after exercise may occur and last for several hours due to increased insulin sensitivity. Hypoglycemia is less common in patients with diabetes who are not treated with insulin or insulin secretagogues, and no routine preventive measures for hypoglycemia are usually advised in these cases. Intense activities may actually raise blood glucose levels instead of lowering them, especially if pre-exercise glucose levels are elevated (157).

Exercise in the Presence of Microvascular Complications

See Section 11 “Microvascular Complications and Foot Care” for more information on these long-term complications.

Retinopathy

If proliferative diabetic retinopathy or severe nonproliferative diabetic retinopathy is present, then vigorous-intensity aerobic or resistance exercise may be contraindicated because of the risk of triggering vitreous hemorrhage or retinal detachment (158). Consultation with an ophthalmologist prior to engaging in an intense exercise regimen may be appropriate.

Peripheral Neuropathy

Decreased pain sensation and a higher pain threshold in the extremities result in an increased risk of skin breakdown, infection, and Charcot joint destruction with some forms of exercise. Therefore, a thorough assessment should be done to ensure that neuropathy does not alter kinesthetic or proprioceptive sensation during physical activity, particularly in those with more severe neuropathy. Studies have shown that moderate-intensity walking may not lead to an increased risk of foot ulcers or re ulceration in those with peripheral neuropathy who use proper footwear (159). In addition, 150 min/week of moderate exercise was reported to improve outcomes in patients with prediabetic neuropathy (160). All individuals with peripheral neuropathy should wear proper footwear and examine their feet daily to detect lesions early. Anyone with a foot injury or open sore should be restricted to non-weight-bearing activities.

Autonomic Neuropathy

Autonomic neuropathy can increase the risk of exercise-induced injury or adverse events through decreased cardiac responsiveness to exercise, postural hypotension, impaired thermoregulation, impaired night vision due to impaired papillary reaction, and greater susceptibility to hypoglycemia (161). Cardiovascular autonomic neuropathy is also an independent risk factor for cardiovascular death and silent myocardial ischemia (162). Therefore, individuals with diabetic autonomic neuropathy should undergo cardiac investigation before beginning physical activity more intense than that to which they are accustomed.

Diabetic Kidney Disease

Physical activity can acutely increase urinary albumin excretion. However, there is no evidence that vigorous-intensity exercise increases the rate of progression of diabetic kidney disease, and there appears to be no need for specific exercise restrictions for people with diabetic kidney disease in general (158).

SMOKING CESSATION: TOBACCO AND E-CIGARETTES

Recommendations

5.29 Advise all patients not to use cigarettes and other tobacco products A or e-cigarettes. B

5.30 Include smoking cessation counseling and other forms of treatment as a routine component of diabetes care. A

Results from epidemiological, case-control, and cohort studies provide convincing evidence to support the causal link between cigarette smoking and health risks (163). Recent data show tobacco use is higher among adults with chronic conditions (164) as well as in adolescents and young adults with diabetes (165). Smokers with diabetes (and people with diabetes exposed to second-hand smoke) have a heightened risk of CVD, premature death, microvascular complications, and worse glycemic control when compared with nonsmokers (166,167). Smoking may have a role in the development of type 2 diabetes (168–171).

The routine and thorough assessment of tobacco use is essential to prevent smoking or encourage cessation. Numerous large randomized clinical trials have demonstrated the efficacy and cost-effectiveness of brief counseling in smoking cessation, including the use of telephone quit lines, in reducing tobacco use. Pharmacologic therapy to assist with smoking cessation in people with diabetes has been shown to be effective (172), and for the patient motivated to quit, the addition of pharmacologic therapy to counseling is more effective than either treatment alone (173). Special considerations should include assessment of level of nicotine dependence, which is associated with difficulty in quitting and relapse (174). Although some patients may gain weight in the period shortly after smoking
cessation (175), recent research has demonstrated that this weight gain does not diminish the substantial CVD benefit realized from smoking cessation (176). One study in smokers with newly diagnosed type 2 diabetes found that smoking cessation was associated with amelioration of metabolic parameters and reduced blood pressure and albuminuria at 1 year (177).

In recent years e-cigarettes have gained public awareness and popularity because of perceptions that e-cigarette use is less harmful than regular cigarette smoking (178,179). Nonsmokers should be advised not to use e-cigarettes (180,181). There are no rigorous studies that have demonstrated that e-cigarettes are a healthier alternative to smoking or that e-cigarettes can facilitate smoking cessation (182). On the contrary, a recently published pragmatic trial found that use of e-cigarettes for smoking cessation was not more effective than “usual care,” which included access to educational information on the health benefits of smoking cessation, strategies to promote cessation, and access to a free text-messaging service that provided encouragement, advice, and tips to facilitate smoking cessation (183). Several organizations have called for more research on the short- and long-term safety and health effects of e-cigarettes (184–186).

PSYCHOSOCIAL ISSUES

Recommendations

5.31 Psychosocial care should be integrated with a collaborative, patient-centered approach and provided to all people with diabetes, with the goals of optimizing health outcomes and health-related quality of life.

5.32 Psychosocial screening and follow-up may include, but are not limited to, attitudes about diabetes, expectations for medical management and outcomes, affect or mood, general and diabetes-related quality of life, available resources (financial, social, and emotional), and psychiatric history.

5.33 Providers should consider assessment for symptoms of diabetes distress, depression, anxiety, disordered eating, and cognitive capacities using patient-appropriate standardized and validated tools at the initial visit, at periodic intervals, and when there is a change in disease, treatment, or life circumstance. Including caregivers and family members in this assessment is recommended.

5.34 Consider screening older adults (aged ≥65 years) with diabetes for cognitive impairment and depression.

Please refer to the ADA position statement “Psychosocial Care for People With Diabetes” for a list of assessment tools and additional details (187).

Complex environmental, social, behavioral, and emotional factors, known as psychosocial factors, influence living with diabetes, both type 1 and type 2, and achieving satisfactory medical outcomes and psychological well-being. Thus, individuals with diabetes and their families are challenged with complex, multifaceted issues when integrating diabetes care into daily life.

Emotional well-being is an important part of diabetes care and self-management. Psychological and social problems can impair the individual’s (188–190) or family’s (191) ability to carry out diabetes care tasks and therefore potentially compromise health status. There are opportunities for the clinician to routinely assess psychosocial status in a timely and efficient manner for referral to appropriate services. A systematic review and meta-analysis showed that psychosocial interventions modestly but significantly improved A1C (standardized mean difference −0.29%) and mental health outcomes (192). However, there was a limited association between the effects on A1C and mental health, and no intervention characteristics predicted benefit on both outcomes.

Screening

Key opportunities for psychosocial screening occur at diabetes diagnosis, during regularly scheduled management visits, during hospitalizations, with new onset of complications, or when problems with glucose control, quality of life, or self-management are identified (1). Patients are likely to exhibit psychological vulnerability at diagnosis, when their medical status changes (e.g., end of the honeymoon period), when the need for intensified treatment is evident, and when complications are discovered.

Providers can start with informal verbal inquiries, for example, by asking if there have been changes in mood during the past 2 weeks or since the patient’s last visit. Providers should consider asking if there are new or different barriers to treatment and self-management, such as feeling overwhelmed or stressed by diabetes or other life stressors. Standardized and validated tools for psychosocial monitoring and assessment can also be used by providers (187), with positive findings leading to referral to a mental health provider specializing in diabetes for comprehensive evaluation, diagnosis, and treatment.

Diabetes Distress

Recommendation

5.35 Routinely monitor people with diabetes for diabetes distress, particularly when treatment targets are not met and/or at the onset of diabetes complications.

Diabetes distress (DD) is very common and is distinct from other psychological disorders (193–195). DD refers to significant negative psychological reactions related to emotional burdens and worries specific to an individual’s experience in having to manage a severe, complicated, and demanding chronic disease such as diabetes (194–196). The constant behavioral demands (medication dosing, frequency, and titration; monitoring blood glucose, food intake, eating patterns, and physical activity) of diabetes self-management and the potential or actuality of disease progression are directly associated with reports of DD (194). The prevalence of DD is reported to be 18–45% with an incidence of 38–48% over 18 months (196). In the second Diabetes Attitudes, Wishes and Needs (DAWN2) study, significant DD was reported by 45% of the participants, but only 24% reported that their health care teams asked them how diabetes affected their lives (193). High levels of DD significantly impact medication-taking behaviors and are linked to higher
A1C, lower self-efficacy, and poorer dietary and exercise behaviors (17,194, 196). DSMES has been shown to reduce DD (17). It may be helpful to provide counseling regarding expected diabetes-related versus generalized psychological distress at diagnosis and when disease state or treatment changes (197).

DD should be routinely monitored (198) using patient-appropriate validated measures (187). If DD is identified, the person should be referred for specific diabetes education to address areas of diabetes self-care that are most relevant to the patient and impact clinical management. People whose self-care remains impaired after tailored diabetes education should be referred by their care team to a behavioral health provider for evaluation and treatment.

Other psychosocial issues known to affect self-management and health outcomes include attitudes about the illness, expectations for medical management and outcomes, available resources (financial, social, and emotional) (199), and psychiatric history. For additional information on psychiatric comorbidities (depression, anxiety, disordered eating, and serious mental illness), please refer to Section 4 “Comprehensive Medical Evaluation and Assessment of Comorbidities.”

Referral to a Mental Health Specialist
Indications for referral to a mental health specialist familiar with diabetes management may include positive screening for overall stress related to work-life balance, DD, diabetes management difficulties, depression, anxiety, disordered eating, and cognitive dysfunction (see Table 5.2 for a complete list). It is preferable to incorporate psychosocial assessment and treatment into routine care rather than waiting for a specific problem or deterioration in metabolic or psychological status to occur (26,193). Providers should identify behavioral and mental health providers, ideally those who are knowledgeable about diabetes treatment and the psychosocial aspects of diabetes, to whom they can refer patients. The ADA provides a list of mental health providers who have received additional education in diabetes at the ADA Mental Health Provider Directory (professional.diabetes.org/ada-mental-health-provider-directory). Ideally, psychosocial care providers should be embedded in diabetes care settings. Although the clinician may not feel qualified to treat psychological problems (200), optimizing the patient-provider relationship as a foundation may increase the likelihood of the patient accepting referral for other services. Collaborative care interventions and a team approach have demonstrated efficacy in diabetes self-management, outcomes of depression, and psychosocial functioning (17,201).

References
18. Robbins JM, Thatcher GE, Webb DA, Valdimaris VG. Nutritionist visits, diabetes classes,
and hospitalization rates and charges; the Urban Diabetes Study. Diabetes Care 2008;31: 655–660
64. Sainsbury E, Kizirian NV, Partridge SR, Gill T, Colagiuri S, Gibson AA. Effect of dietary

Lifestyle Management

159. Peters A, Laffel L (Eds.). Diabetes Care 2006;30:2729–2736

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

ASSESSMENT OF GLYCEMIC CONTROL

Glycemic management is primarily assessed with the A1C test, which was the measure studied in clinical trials demonstrating the benefits of improved glycemic control. Patient self-monitoring of blood glucose (SMBG) may help with self-management and medication adjustment, particularly in individuals taking insulin. Continuous glucose monitoring (CGM) also has an important role in assessing the effectiveness and safety of treatment in many patients with type 1 diabetes, and limited data suggest it may also be helpful in selected patients with type 2 diabetes, such as those on intensive insulin regimens (1).

A1C Testing

<table>
<thead>
<tr>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Perform the A1C test at least two times a year in patients who are meeting treatment goals (and who have stable glycemic control). E</td>
</tr>
<tr>
<td>6.2 Perform the A1C test quarterly in patients whose therapy has changed or who are not meeting glycemic goals. E</td>
</tr>
<tr>
<td>6.3 Point-of-care testing for A1C provides the opportunity for more timely treatment changes. E</td>
</tr>
</tbody>
</table>

A1C reflects average glycemia over approximately 3 months. The performance of the test is generally excellent for NGSP-certified assays (www.ngsp.org). The test is the major tool for assessing glycemic control and has strong predictive value for diabetes complications (1–3). Thus, A1C testing should be performed routinely in all patients with diabetes—at initial assessment and as part of continuing care. Measurement approximately every 3 months determines whether patients’ glycemic targets have been reached and maintained. The frequency of A1C testing should depend on the clinical situation, the treatment regimen, and the clinician’s judgment. The use of point-of-care A1C testing may provide an opportunity for more timely treatment changes during encounters between patients and providers. Patients with type 2
A1C and Mean Glucose

Table 6.1 shows the correlation between A1C levels and mean glucose levels based on two studies: the international A1C-Derived Average Glucose (ADAG) study, which assessed the correlation between A1C and frequent SMBG and CGM in 507 adults (83% non-Hispanic whites) with type 1, type 2, and no diabetes (6), and an empirical study of the average blood glucose levels at premeal, postmeal, and bedtime associated with specified A1C levels using data from the ADAG trial (7). The American Diabetes Association (ADA) and the American Association for Clinical Chemistry have determined that the correlation \(r = 0.92 \) in the ADAG trial is strong enough to justify reporting both the A1C result and the estimated average glucose (eAG) result when a clinician orders the A1C test. Clinicians should note that the mean plasma glucose numbers in the table are based on \(\sim 2,700 \) readings per A1C in the ADAG trial. In a recent report, mean glucose measured with CGM versus central laboratory–measured A1C in 387 participants in three randomized trials demonstrated that A1C may underestimate or overestimate mean glucose (5). Thus, as suggested, a patient’s CGM profile has considerable potential for optimizing his or her glycemic management (5).

A1C Differences in Ethnic Populations and Children

In the ADAG study, there were no significant differences among racial and ethnic groups in the regression lines between A1C and mean glucose, although the study was underpowered to detect a difference and there was a trend toward a difference between the African/African American and non-Hispanic white cohorts, with higher A1C values observed in Africans/African Americans compared with non-Hispanic whites for a given mean glucose. Other studies have also demonstrated higher A1C levels in African Americans than in whites at a given mean glucose concentration (8,9).

A1C assays are available that do not demonstrate a statistically significant difference in individuals with hemoglobin variants. Other assays have statistically significant interference, but the difference is not clinically significant. Use of an assay with such statistically significant interference may explain a report that for any level of mean glycemia, African Americans heterozygous for the common hemoglobin variant HbS had lower A1C by about 0.3 percentage points when compared with those without the trait (10,11). Another genetic variant, X-linked glucose-6-phosphate dehydrogenase G202A, carried by 11% of African Americans, was associated with a decrease in A1C of about 0.8% in hemizygous men and 0.7% in homozygous women compared with those without the trait (12).

A small study comparing A1C to CGM data in children with type 1 diabetes found a highly statistically significant correlation between A1C and mean blood glucose, although the correlation \(r = 0.7 \) was significantly lower than in the ADAG trial (13). Whether there are clinically meaningful differences in how A1C relates to average glucose in children or in different ethnicities is an area for further study (8,14,15). Until further evidence is available, it seems prudent to establish A1C goals in these populations with consideration of both individualized SMBG and A1C results.

Glucose Assessment

For many people with diabetes, glucose monitoring is key for the achievement of glycemic targets. Major clinical trials of insulin-treated patients have included SMBG as part of multifactorial interventions to demonstrate the benefit of intensive glycemic control on diabetes complications (16). SMBG is thus an integral component of effective therapy of patients taking insulin. In recent years, CGM has emerged as a complementary method for the assessment of glucose levels. Glucose monitoring allows patients to evaluate their individual response to therapy and assess whether glycemic targets are being safely achieved. Integrating results into diabetes management can be a useful tool for guiding medical nutrition therapy and physical activity, preventing hypoglycemia, and adjusting medications (particularly prandial insulin doses). The patient’s specific needs and goals should dictate SMBG frequency and timing or the consideration of CGM use. Please refer to Section 7 “Diabetes Technology” for a fuller discussion of the use of SMBG and CGM.
For glycemic goals in older adults, please refer to Section 12, "Older Adults."

For glycemic goals in children, please refer to Section 13, "Children and Adolescents."

For glycemic goals in pregnant women, please refer to Section 14, "Management of Diabetes in Pregnancy."

Recommendations

6.4 A reasonable A1C goal for many nonpregnant adults is <7% (53 mmol/mol). A less stringent A1C goal (such as <8% [64 mmol/mol]) may be appropriate for patients with short duration of diabetes, type 2 diabetes treated with lifestyle therapy only, or no significant cardiovascular disease.

6.5 Providers might reasonably suggest more stringent A1C goals (such as <6.5% [48 mmol/mol]) for selected individual patients if this can be achieved without significant hypoglycemia or other adverse effects of treatment (i.e., polypharmacy). Appropriate patients might include those with short duration of diabetes, type 2 diabetes treated with lifestyle therapy only, or no significant cardiovascular disease.

6.6 Less stringent A1C goals (such as <8% [64 mmol/mol]) may be appropriate for patients with a history of severe hypoglycemia, limited life expectancy, advanced microvascular or macrovascular complications, extensive comorbid conditions, or long-standing diabetes, in whom the goal is difficult to achieve despite good glycemic targets. In such patients, other treatment goals (e.g., weight loss or control of blood pressure) may be more important than achieving a lower A1C goal.

6.7 Reassess glycemic targets over time based on the criteria in Fig. 6.1 or, in older adults, Table 12.1 E.

<table>
<thead>
<tr>
<th>A1C</th>
<th>Mean plasma glucose</th>
<th>Mean postmeal glucose</th>
<th>Mean bedtime glucose</th>
<th>Mean fasting glucose</th>
<th>Mean premeal glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td><5% (33 mmol/mol)</td>
<td>80 (72–88)</td>
<td>6.7 (6.1–7.3)</td>
<td>5.6 (4.8–6.3)</td>
<td>108 (99–117)</td>
<td>126 (116–136)</td>
</tr>
<tr>
<td>5%–6% (33–44 mmol/mol)</td>
<td>100 (92–108)</td>
<td>7.5 (6.9–8.1)</td>
<td>6.4 (5.7–7.1)</td>
<td>134 (125–143)</td>
<td>152 (143–162)</td>
</tr>
<tr>
<td>>6% (44 mmol/mol)</td>
<td>126 (118–134)</td>
<td>9.1 (8.4–9.8)</td>
<td>7.9 (7.1–8.5)</td>
<td>167 (159–175)</td>
<td>185 (177–195)</td>
</tr>
</tbody>
</table>
reductions in rates of development and progression of microvascular (retinopathy, neuropathy, and diabetic kidney disease) complications. Follow-up of the DCCT cohorts in the Epidemiology of Diabetes Interventions and Complications (EDIC) study (17,18) demonstrated persistence of these microvascular benefits over two decades despite the fact that the glycemic separation between the treatment groups diminished and disappeared during follow-up.

The Kumamoto Study (19) and UK Prospective Diabetes Study (UKPDS) (20,21) confirmed that intensive glycemic control significantly decreased rates of microvascular complications in patients with short-duration type 2 diabetes. Long-term follow-up of the UKPDS cohorts showed enduring effects of early glycemic control on most microvascular complications (22).

Therefore, achieving A1C targets of <7% (53 mmol/mol) has been shown to reduce microvascular complications of type 1 and type 2 diabetes when instituted early in the course of disease. Epidemiologic analyses of the DCCT (16) and UKPDS (23) demonstrate a curvilinear relationship between A1C and microvascular complications. Such analyses suggest that, on a population level, the greatest number of complications will be averted by taking patients from very poor control to fair/good control. These analyses also suggest that further lowering of A1C from 7% to 6% [53 mmol/mol to 42 mmol/mol] is associated with further reduction in the risk of microvascular complications, although the absolute risk reductions become much smaller. Given the substantially increased risk of hypoglycemia in type 1 diabetes trials and with polypharmacy in type 2 diabetes, the risks of lower glycemic targets may outweigh the potential benefits on microvascular complications.

Three landmark trials (Action to Control Cardiovascular Risk in Diabetes [ACCORD], Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation [ADVANCE], and Veterans Affairs Diabetes Trial [VADT]) were conducted to test the effects of near normalization of blood glucose on cardiovascular outcomes in individuals with long-standing type 2 diabetes and either known cardiovascular disease (CVD) or high cardiovascular risk. These trials showed that lower A1C levels were associated with reduced onset or progression of some microvascular complications (24–26).

The concerning mortality findings in the ACCORD trial (27), discussed below, and the relatively intense efforts required to achieve near euglycemia should also be considered when setting glycemic targets for individuals with long-standing diabetes such as those studied in ACCORD, ADVANCE, and VADT. Findings from these studies suggest caution is needed in treating diabetes aggressively to near-normal A1C goals in people with long-standing type 2 diabetes with or at significant risk of CVD. However, on the basis of physician...
judgment and patient preferences, select patients, especially those with little co-morbidity and long life expectancy, may benefit from adopting more intensive glycemic targets (e.g., A1C target <6.5% [48 mmol/mol]) if they can achieve it safely without hypoglycemia or significant therapeutic burden.

A1C and Cardiovascular Disease Outcomes

Cardiovascular Disease and Type 1 Diabetes

CVD is a more common cause of death than microvascular complications in populations with diabetes. There is evidence for a cardiovascular benefit of intensive glycemic control after long-term follow-up of cohorts treated early in the course of type 1 diabetes. In the DCCT, there was a trend toward lower risk of CVD events with intensive control. In the 9-year post-DCCT follow-up of the EDIC cohort, participants previously randomized to the intensive arm had a significant 57% reduction in the risk of nonfatal myocardial infarction (MI), stroke, or cardiovascular death compared with those previously randomized to the standard arm (28). The benefit of intensive glycemic control in this cohort with type 1 diabetes has been shown to persist for several decades (29) and to be associated with a modest reduction in all-cause mortality (30).

Cardiovascular Disease and Type 2 Diabetes

In type 2 diabetes, there is evidence that more intensive treatment of glycemia in newly diagnosed patients may reduce long-term CVD rates. During the UKPDS, there was a 16% reduction in CVD events (combined fatal or nonfatal MI and sudden death) in the intensive glycemic control arm that did not reach statistical significance (P = 0.052), and there was no suggestion of benefit on other CVD outcomes (e.g., stroke). However, after 10 years of observational follow-up, those originally randomized to intensive glycemic control had significant long-term reductions in MI (15% with sulfonylurea or insulin as initial pharmacotherapy, 33% with metformin as initial pharmacotherapy) and in all-cause mortality (13% and 27%, respectively) (22).

ACCORD, ADVANCE, and VADT suggested no significant reduction in CVD outcomes with intensive glycemic control in participants followed for shorter durations (3.5–5.6 years) and who had more advanced type 2 diabetes than UKPDS participants. All three trials were conducted in relatively older participants with longer known duration of diabetes (mean duration 8–11 years) and either CVD or multiple cardiovascular risk factors. The target A1C among intensive-control subjects was <6% (42 mmol/mol) in ACCORD, <6.5% (48 mmol/mol) in ADVANCE, and a 1.5% reduction in A1C compared with control subjects in VADT, with achieved A1C of 6.4% vs. 7.5% (46 mmol/mol vs. 58 mmol/mol) in ACCORD, 6.5% vs. 7.3% (48 mmol/mol vs. 56 mmol/mol) in ADVANCE, and 6.9% vs. 8.4% (52 mmol/mol vs. 68 mmol/mol) in VADT. Details of these studies are reviewed extensively in “Intensive Glycemic Control and the Prevention of Cardiovascular Events: Implications of the ACCORD, ADVANCE, and VA Diabetes Trials” (31).

The glycemic control comparison in ACCORD was halted early due to an increased mortality rate in the intensive compared with the standard treatment arm (1.41% vs. 1.14% per year; hazard ratio 1.22 [95% CI 1.01–1.46]), with a similar increase in cardiovascular deaths. Analysis of the ACCORD data did not identify a clear explanation for the excess mortality in the intensive treatment arm (27).

Longer-term follow-up has shown no evidence of cardiovascular benefit or harm in the ADVANCE trial (32). The end-stage renal disease rate was lower in the intensive treatment group over follow-up. However, 10-year follow-up of the VADT cohort (33) showed a reduction in the risk of cardiovascular events (52.7 [control group] vs. 44.1 [intervention group] events per 1,000 person-years) with no benefit in cardiovascular or overall mortality. Heterogeneity of mortality effects across studies was noted, which may reflect differences in glycemic targets, therapeutic approaches, and population characteristics (34).

Mortality findings in ACCORD (27) and subgroup analyses of VADT (35) suggest that the potential risks of intensive glycemic control may outweigh its benefits in higher-risk patients. In all three trials, severe hypoglycemia was significantly more likely in participants who were randomly assigned to the intensive glycemic control arm. Those patients with long duration of diabetes, a known history of hypoglycemia, advanced atherosclerosis, or advanced age/frailty may benefit from less aggressive targets (36,37).

As discussed further below, severe hypoglycemia is a potent marker of high absolute risk of cardiovascular events and mortality (38). Providers should be vigilant in preventing hypoglycemia and should not aggressively attempt to achieve near-normal A1C levels in patients in whom such targets cannot be safely and reasonably achieved.

As discussed in Section 9 “Pharmacologic Approaches to Glycemic Treatment,” addition of specific sodium–glucose co-transporter 2 inhibitors (SGLT2i) or glucagon-like peptide 1 receptor agonists (GLP-1 RA) to improve cardiovascular outcomes in patients with established CVD is indicated with consideration of glycemic goals. If the patient is not at A1C target, continue metformin unless contraindicated and add SGLT2i or GLP-1 RA with proven cardiovascular benefit. If the patient is meeting A1C target, consider one of three strategies (39):

1. If already on dual therapy or multiple glucose-lowering therapies and not on an SGLT2i or GLP-1 RA, consider switching to one of these agents with proven cardiovascular benefit.
2. Reconsider/lower individualized A1C target and introduce SGLT2i or GLP-1 RA.
3. Reassess A1C at 3-month intervals and add SGLT2i or GLP-1 RA if A1C goes above target.

Setting and Modifying A1C Goals

Numerous factors must be considered when setting glycemic targets. The ADA proposes general targets appropriate for many patients but emphasizes the importance of individualization based on key patient characteristics. Glycemic targets must be individualized in the context of shared decision making to address the needs and preferences of each patient and the individual characteristics that influence risks and benefits of therapy for each patient.

The factors to consider in individualizing goals are depicted in Fig. 6.1. Figure 6.1 is not designed to be applied rigidly but to be used as a broad construct to guide clinical decision making (40) in both type 1 and type 2 diabetes. More stringent control (such as an A1C of 6.5% [48 mmol/mol] or <7% [53 mmol/mol]) may be recommended if it can be achieved
Individuals at risk for hypoglycemia include those with diabetes who are taking insulin or sulfonylurea therapy. Less stringent control (A1C up to 8% [64 mmol/mol]) may be recommended if the life expectancy of the patient is such that the benefits of an intensive goal may not be realized, or if the risks and burdens outweigh the potential benefits. Severe or frequent hypoglycemia is an absolute indication for the modification of treatment regimens, including setting higher glycemic goals.

Diabetes is a chronic disease that progresses over decades. Thus, a goal that might be appropriate for an individual early in the course of the disease may change over time. Newly diagnosed patients and/or those without comorbidities that limit life expectancy may benefit from intensive control proven to prevent microvascular complications. Both DCCT/EDIC and UKPDS demonstrated metabolic memory, or a legacy effect, in which a finite period of intensive control yielded benefits that extended for decades after that control ended. Thus, a finite period of intensive control to near-normal A1C may yield enduring benefits even if control is subsequently deintensified as patient characteristics change. Over time, comorbidities may emerge, decreasing life expectancy and the potential to reap benefits from intensive control. Also, with longer duration of disease, diabetes may become more difficult to control, with increasing risks and burdens of therapy. Thus, A1C targets should be reevaluated over time to balance the risks and benefits as patient factors change.

Recommended glycemic targets for many nonpregnant adults are shown in Table 6.2. The recommendations include blood glucose levels that appear to correlate with achievement of an A1C of <7% (53 mmol/mol). The issue of preprandial versus postprandial SMBG targets is complex (41). Elevated postchallenge (2-h oral glucose tolerance test) glucose values have been associated with increased cardiovascular risk independent of fasting plasma glucose in some epidemiologic studies, but intervention trials have not shown postprandial glucose to be a cardiovascular risk factor independent of A1C. In subjects with diabetes, surrogate measures of vascular pathology, such as endothelial dysfunction, are negatively affected by postprandial hyperglycemia. It is clear that postprandial hyperglycemia, like preprandial hyperglycemia, contributes to elevated A1C levels, with its relative contribution being greater at A1C levels that are closer to 7% (53 mmol/mol). However, outcome studies have clearly shown A1C to be the primary predictor of complications, and landmark trials of glycemic control such as the DCCT and UKPDS relied overwhelmingly on preprandial SMBG. Additionally, a randomized controlled trial in patients with known CVD found no CVD benefit of insulin regimens targeting postprandial glucose compared with those targeting preprandial glucose (42). Therefore, it is reasonable for postprandial testing to be recommended for individuals who have premeal glucose values within target but have A1C values above target. Measuring postprandial plasma glucose 1–2 h after the start of a meal and using treatments aimed at reducing postprandial plasma glucose values to <180 mg/dL (10.0 mmol/L) may help to lower A1C.

An analysis of data from 470 participants in the ADAG study (237 with type 1 diabetes and 147 with type 2 diabetes) found that actual average glucose levels associated with conventional A1C targets were higher than older DCCT and ADA targets (Table 6.1) (7,43). These findings support that premeal glucose targets may be relaxed without undermining overall glycemic control as measured by A1C. These data prompted the revision in the ADA-recommended premeal glucose target to 80–130 mg/dL (4.4–7.2 mmol/L) but did not affect the definition of hypoglycemia.

Hypoglycemia

Recommendations

6.8 Individuals at risk for hypoglycemia should be asked about symptomatic and asymptomatic hypoglycemia at each encounter. C

6.9 Glucose (15–20 g) is the preferred treatment for the conscious individual with blood glucose <70 mg/dL (3.9 mmol/L), although any form of carbohydrate that contains glucose may be used. Fifteen minutes after treatment, if SMBG shows continued hypoglycemia, the treatment should be repeated. Once SMBG returns to normal, the individual should consume a meal or snack to prevent recurrence of hypoglycemia. E

6.10 Glucagon should be prescribed for all individuals at increased risk of level 2 hypoglycemia, defined as blood glucose <54 mg/dL (3.0 mmol/L), so it is available should it be needed. Caregivers, school personnel, or family members of these individuals should know where it is and when and how to administer it. Glucagon administration is not limited to health care professionals. E

6.11 Hypoglycemia unawareness or one or more episodes of level 3 hypoglycemia should trigger reevaluation of the treatment regimen. E

6.12 Insulin-treated patients with hypoglycemia unawareness or an episode of level 2 hypoglycemia should be advised to raise their glycemic targets to strictly avoid hypoglycemia for at least several weeks in order to partially reverse hypoglycemia unawareness and reduce risk of future episodes. A

6.13 Ongoing assessment of cognitive function is suggested with

Table 6.2—Summary of glycemic recommendations for many nonpregnant adults with diabetes

<table>
<thead>
<tr>
<th>A1C</th>
<th>Preprandial capillary plasma glucose</th>
<th>Postprandial capillary plasma glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><7.0% (53 mmol/mol)*</td>
<td><180 mg/dL (10.0 mmol/L)*</td>
</tr>
</tbody>
</table>

*More or less stringent glycemic goals may be appropriate for individual patients. Goals should be individualized based on duration of diabetes, age/life expectancy, comorbid conditions, known CVD or advanced microvascular complications, hypoglycemia unawareness, and individual patient considerations. *Postprandial glucose may be targeted if A1C goals are not met despite reaching preprandial glucose goals. Postprandial glucose measurements should be made 1–2 h after the beginning of the meal, generally peak levels in patients with diabetes.
Hypoglycemia is the major limiting factor in the glycemic management of type 1 and type 2 diabetes. Recommendations regarding the classification of hypoglycemia are outlined in Table 6.3 (44). Level 1 hypoglycemia is defined as a measurable glucose concentration <70 mg/dL (3.9 mmol/L) but ≥54 mg/dL (3.0 mmol/L). A blood glucose concentration of 70 mg/dL (3.9 mmol/L) has been recognized as a threshold for neuroendocrine responses to falling glucose in people without diabetes. Because many people with diabetes demonstrate impaired counterregulatory responses to hypoglycemia and/or experience hypoglycemia unawareness, a measured glucose level <70 mg/dL (3.9 mmol/L) is considered clinically important, independent of the severity of acute hypoglycemic symptoms. Level 2 hypoglycemia (defined as a blood glucose concentration <54 mg/dL (3.0 mmol/L)) is the threshold at which neuroglycopenic symptoms begin to occur and requires immediate action to resolve the hypoglycemic event. Lastly, level 3 hypoglycemia is defined as a severe event characterized by altered mental and/or physical functioning that requires assistance from another person for recovery.

Studies of rates of level 3 hypoglycemia that rely on claims data for hospitalization, emergency department visits, and ambulance use substantially underestimate rates of level 3 hypoglycemia (45), yet find high burden of hypoglycemia in adults over 60 years of age in the community (46). African Americans are at substantially increased risk of level 3 hypoglycemia (46,47). In addition to age and race, other important risk factors found in a community-based epidemiologic cohort of older black and white adults with type 2 diabetes include insulin use, poor or moderate versus good glycemic control, albuminuria, and poor cognitive function (46).

Symptoms of hypoglycemia include, but are not limited to, shakiness, irritability, confusion, tachycardia, and hunger. Hypoglycemia may be inconvenient or frightening to patients with diabetes. Level 3 hypoglycemia may be recognized or unrecognized and can progress to loss of consciousness, seizure, coma, or death. It is reversed by administration of rapid-acting glucose or glucagon. Hypoglycemia can cause acute harm to the person with diabetes or others, especially if it causes falls, motor vehicle accidents, or other injury. A large cohort study suggested that among older adults with type 2 diabetes, a history of level 3 hypoglycemia was associated with greater risk of dementia (48). Conversely, in a substudy of the ACCORD trial, cognitive impairment at baseline or decline in cognitive function during the trial was significantly associated with subsequent episodes of level 3 hypoglycemia (49). Evidence from DCCT/EDIC, which involved adolescents and younger adults with type 1 diabetes, found no association between frequency of level 3 hypoglycemia and cognitive decline (50), as discussed in Section 13 “Children and Adolescents.”

Level 3 hypoglycemia was associated with mortality in participants in both the standard and the intensive glycemia arms of the ACCORD trial, but the relationships between hypoglycemia, achieved A1C, and treatment intensity were not straightforward. An association of level 3 hypoglycemia with mortality was also found in the ADVANCE trial (51). An association between self-reported level 3 hypoglycemia and 5-year mortality has also been reported in clinical practice (52).

Young children with type 1 diabetes and the elderly, including those with type 1 and type 2 diabetes (48,53), are noted as particularly vulnerable to hypoglycemia because of their reduced ability to recognize hypoglycemic symptoms and effectively communicate their needs. Individualized glucose targets, patient education, dietary intervention (e.g., bedtime snack to prevent overnight hypoglycemia when specifically needed to treat low blood glucose), exercise management, medication adjustment, glucose monitoring, and routine clinical surveillance may improve patient outcomes (54). CGM with automated low glucose suspend has been shown to be effective in reducing hypoglycemia in type 1 diabetes (55). For patients with type 1 diabetes with level 3 hypoglycemia and hypoglycemia unawareness that persists despite medical treatment, human islet transplantation may be an option, but the approach remains experimental (56,57).

In 2015, the ADA changed its preprandial glycemic target from 70–130 mg/dL (3.9–7.2 mmol/L) to 80–130 mg/dL (4.4–7.2 mmol/L). This change reflects the results of the ADAG study, which demonstrated that higher glycemic targets corresponded to A1C goals (7). An additional goal of raising the lower range of the glycemic target was to limit overtreatment and provide a safety margin in patients titrating glucose-lowering drugs such as insulin to glycemic targets.

Hypoglycemia Treatment

Providers should continue to counsel patients to treat hypoglycemia with fast-acting carbohydrates at the hypoglycemia alert value of 70 mg/dL (3.9 mmol/L) or less. Hypoglycemia treatment requires ingestion of glucose- or carbohydrate-containing foods. The acute glycemic response correlates better with the glucose content of food than with the carbohydrate content of food. Pure glucose is the preferred treatment, but any form of carbohydrate that contains glucose will raise blood glucose. Added fat may retard and then prolong the acute glycemic response. In type 2 diabetes, ingested protein may increase insulin response without increasing plasma glucose concentrations (58). Therefore, carbohydrate sources high in protein should not be used to treat or prevent hypoglycemia. Ongoing insulin activity or insulin secretagogues may lead to recurrent hypoglycemia.

<table>
<thead>
<tr>
<th>Table 6.3—Classification of hypoglycemia (44)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Level 1</td>
</tr>
<tr>
<td>Level 2</td>
</tr>
<tr>
<td>Level 3</td>
</tr>
</tbody>
</table>
Glycemic Targets

unlike more food is ingested after recovery. Once the glucose returns to normal, the individual should be counseled to eat a meal or snack to prevent recurrent hypoglycemia.

Glucagon

The use of glucagon is indicated for the treatment of hypoglycemia in people unable or unwilling to consume carbohydrates by mouth. Those in close contact with, or having custodial care of, people with hypoglycemia-prone diabetes (family members, roommates, school personnel, child care providers, correctional institution staff, or coworkers) should be instructed on the use of glucagon kits, including where the kit is and when and how to administer glucagon. An individual does not need to be a health care professional to safely administer glucagon. Care should be taken to ensure that glucagon kits are not expired.

Hypoglycemia Prevention

Hypoglycemia prevention is a critical component of diabetes management. SMBG and, for some patients, CGM are essential tools to assess therapy and detect incipient hypoglycemia. Patients should understand situations that increase their risk of hypoglycemia, such as when fasting for tests or procedures, when meals are delayed, during and after the consumption of alcohol, during and after intense exercise, and during sleep. Hypoglycemia may increase the risk of harm to self or others, such as with driving. Teaching people with diabetes to balance insulin use and carbohydrate intake and exercise are necessary, but these strategies are not always sufficient for prevention.

In type 1 diabetes and severely insulin-deficient type 2 diabetes, hypoglycemia unawareness (or hypoglycemia-associated autonomic failure) can severely compromise stringent diabetes control and quality of life. This syndrome is characterized by deficient counterregulatory hormone release, especially in older adults, and a diminished autonomic response, which both are risk factors for, and caused by, hypoglycemia. A corollary to this “vicious cycle” is that several weeks of avoidance of hypoglycemia has been demonstrated to improve counterregulation and hypoglycemia awareness in many patients (59). Hence, patients with one or more episodes of clinically significant hypoglycemia may benefit from at least short-term relaxation of glycemic targets.

INTERCURRENT ILLNESS

For further information on management of patients with hyperglycemia in the hospital, please refer to Section 15 “Diabetes Care in the Hospital.”

Stressful events (e.g., illness, trauma, surgery, etc.) may worsen glycemic control and precipitate diabetic ketoacidosis or nonketotic hyperglycemic hyperosmolar state, life-threatening conditions that require immediate medical care to prevent complications and death. Any condition leading to deterioration in glycemic control necessitates more frequent monitoring of blood glucose; ketosis-prone patients also require urine or blood ketone monitoring. If accompanied by ketosis, vomiting, or alteration in the level of consciousness, marked hyperglycemia requires temporary adjustment of the treatment regimen and immediate interaction with the diabetes care team. The patient treated with noninsulin therapies or medical nutrition therapy alone may require insulin. Adequate fluid and caloric intake must be ensured. Infection or dehydration is more likely to necessitate hospitalization of the person with diabetes than the person without diabetes.

A physician with expertise in diabetes management should treat the hospitalized patient. For further information on the management of diabetic ketoacidosis and the nonketotic hyperglycemic hyperosmolar state, please refer to the ADA consensus report “Hyperglycemic Crises in Adult Patients With Diabetes” (60).

References

3. Little RR, Rohlffing CL, Sacks DB; National Glycohemoglobin Standardization Program (NGSP) Steering Committee. Status of hemoglobin A\textsubscript{1c} measurement and goals for improvement: from chaos to order for improving diabetes care. Clin Chem 2011;57:205–214
5. Beck RW, Connor CG, Mullen DM, Wesley DM, Bergenstal RM. The fallacy of average: how using HbA\textsubscript{1c} alone to assess glycemic control can be misleading. Diabetes Care 2017;40:994–999
7. Wei N, Zheng H, Nathan DM. Empirically establishing blood glucose targets to achieve HbA\textsubscript{1c} goals. Diabetes Care 2014;37:1048–1051
8. Selvin E. Are there clinical implications of racial differences in HbA\textsubscript{1c}? A difference, if a difference, must make a difference. Diabetes Care 2016;39:1462–1467
11. Rohlffing C, Hanson S, Little RR. Measurement of hemoglobin A\textsubscript{1c} in patients with sickle cell trait. JAMA 2017;317:2237

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

Diabetes technology is the term used to describe the hardware, devices, and software that people with diabetes use to help manage blood glucose levels, stave off diabetes complications, reduce the burden of living with diabetes, and improve quality of life. Historically, diabetes technology has been divided into two main categories: insulin administered by syringe, pen, or pump, and blood glucose monitoring as assessed by meter or continuous glucose monitor. More recently, diabetes technology has expanded to include hybrid devices that both monitor glucose and deliver insulin, some automatically, as well as software that serves as a medical device, providing diabetes self-management support. Diabetes technology, when applied appropriately, can improve the lives and health of people with diabetes; however, the complexity and rapid change of the diabetes technology landscape can also be a barrier to patient and provider implementation.

To provide some additional clarity in the diabetes technology space, the American Diabetes Association is, for the first time, adding a dedicated section on diabetes technology to the “Standards of Medical Care in Diabetes.” For this first writing, the section will focus on insulin delivery and glucose monitoring with the most common devices currently in use. In future years, this section will be expanded to include software as a medical device, privacy, cost, technology-enabled diabetes education and support, telemedicine, and other issues that providers and patients encounter with the use of technology in modern diabetes care.

INSULIN DELIVERY

Insulin Syringes and Pens

Recommendations

7.1 For people with diabetes who require insulin, insulin syringes or insulin pens may be used for insulin delivery with consideration of patient preference, insulin type and dosing regimen, cost, and self-management capabilities. B

7.2 Insulin pens or insulin injection aids may be considered for patients with dexterity issues or vision impairment to facilitate the administration of accurate insulin doses. C

© 2018 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals .org/content/license.
Injecting insulin with a syringe or pen is the insulin delivery method used by most people with diabetes (1,2), with the remainder using insulin pumps or automated insulin delivery devices (see sections on those topics below). For patients with diabetes who use insulin, insulin syringes and pens are both able to deliver insulin safely and effectively for the achievement of glycemic targets. When choosing between a syringe and a pen, patient preferences, cost, insulin type and dosing regimen, and self-management capabilities should be considered. It is important to note that while many insulin types are available for purchase as either pens or vials, others may only be available in one form or the other and there may be significant cost differences between pens and vials (see Table 9.3 for a list of insulin product costs with dosage forms). Insulin pens may allow people with vision impairment or dexterity issues to dose insulin accurately (3–5), while insulin injection aids are also available to help with these issues (http://main.diabetes.org/dfforg/pdfs/2018/2018-cg-injection-aids.pdf).

The most common syringe sizes are 1 ml, 0.5 ml, and 0.3 ml, allowing doses of up to 100 units, 50 units, and 30 units of U-100 insulin, respectively. In a few parts of the world, insulin syringes still have U-80 and U-40 markings for older insulin concentrations and veterinary insulin, and U-500 syringes are available for the use of U-500 insulin. Syringes are generally used once but may be reused by the same individual in resource-limited settings with appropriate storage and cleansing (6).

Insulin pens offer added convenience by combining the vial and syringe into a single device. Insulin pens, allowing push-button injections, come as disposable pens with prefilled cartridges or reusable insulin pens with replaceable insulin cartridges. Some reusable pens include a memory function, which can recall dose amounts and timing. “Smart” pens that can be programmed to calculate insulin doses and provide downloadable data reports are also available. Pens also vary with respect to dosing increment and minimal dose, which can range from half-unit doses to 2-unit dose increments.

Needle thickness (gauge) and length is another consideration. Needle gauges range from 22 to 33, with higher gauge indicating a thinner needle. A thicker needle can give a dose of insulin more quickly, while a thinner needle may cause less pain. Needle length ranges from 4 to 12.7 mm, with some evidence suggesting shorter needles may lower the risk of intramuscular injection. When reused, needles may be duller and thus injection more painful. Proper insulin technique is a requisite to obtain the full benefits of insulin injection therapy, and concerns with technique and using the proper technique are outlined in Section 9 “Pharmacologic Approaches to Glycemic Treatment.”

Another insulin delivery option is a disposable patch-like device, which provides a continuous, subcutaneous infusion of rapid-acting insulin (basal), as well as 2-unit increments of bolus insulin at the press of a button (7).

Insulin Pumps

<table>
<thead>
<tr>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3 Individuals with diabetes who have been successfully using continuous subcutaneous insulin infusion should have continued access across third-party payers.</td>
</tr>
<tr>
<td>7.4 Most adults, children, and adolescents with type 1 diabetes should be treated with intensive insulin therapy with either multiple daily injections or an insulin pump.</td>
</tr>
<tr>
<td>7.5 Insulin pump therapy may be considered as an option for all children and adolescents, especially in children under 7 years of age.</td>
</tr>
</tbody>
</table>

Continuous subcutaneous insulin injection (CSII) or insulin pumps have been available in the U.S. for 40 years. These devices deliver rapid-acting insulin throughout the day to help manage blood glucose levels. Most insulin pumps use tubing to deliver insulin through a cannula, while a few attach directly to the skin, without tubing. Most studies comparing multiple daily injections (MDI) with CSII have been relatively small and of short duration. However, a recent systematic review and meta-analysis concluded that pump therapy has modest advantages for lowering A1C (−0.30% [95% CI −0.58 to −0.02]) and for reducing severe hypoglycemia rates in children and adults (8). There is no consensus to guide choosing which form of insulin administration is best for a given patient, and research to guide this decision making is needed (9). Thus, the choice of MDI or an insulin pump is often based upon the individual characteristics of the patient and which is most likely to benefit him or her. Newer systems, such as sensor-augmented pumps and automatic insulin delivery systems, are discussed elsewhere in this section.

Adoption of pump therapy in the U.S. shows geographical variations, which may be related to provider preference or center characteristics (10,11) and socioeconomic status, as pump therapy is more common in individuals of higher socioeconomic status as reflected by race/ethnicity, private health insurance, family income, and education (11,12). Given the additional barriers to optimal diabetes care observed in disadvantaged groups (13), addressing the differences in access to insulin pumps and other diabetes technology may contribute to fewer health disparities.

Pump therapy can be successfully started at the time of diagnosis (14,15). Practical aspects of pump therapy initiation include: assessment of patient and family readiness, (although there is no consensus on which factors to consider in adults (16) or pediatrics), selection of pump type and initial pump settings, patient/family education of potential pump complications (e.g., diabetic ketoacidosis [DKA] with infusion set failure), transition from MDI, and introduction of advanced pump settings (e.g., temporary basal rates, extended/square/dual wave bolus).

Complications of the pump can be caused by issues with infusion sets (dislodgement, occlusion), which place patients at risk for ketosis and DKA and thus must be recognized and managed early (17); lipohypertrophy or, less frequently, lipoatrophy (18,19); and pump site infection (20). Discontinuation of pump therapy is relatively uncommon today; the frequency has decreased over the past decades and its causes have changed (20,21). Current reasons for attrition are problems with cost, wearability, disliking the pump, suboptimal glycemic control, or mood disorders (e.g., anxiety or depression) (22).

Insulin Pumps in Pediatrics

The safety of insulin pumps in youth has been established for over 15 years (23). Studying the effectiveness of CSII in lowering A1C has been challenging because of the potential selection bias of observational studies. Participants on CSII may have a higher socioeconomic status that
may facilitate better glycemic control (24) versus MDI. In addition, the fast pace of development of new insulins and technologies quickly renders comparisons obsolete. However, randomized controlled trials (RCTs) comparing CSII and MDI with insulin analogs demonstrate a modest improvement in A1C in participants on CSII (25,26). Observational studies, registry data, and meta-analysis have also suggested an improvement of glycemic control in participants on CSII (27–29). Although hypoglycemia was a major adverse effect of intensified insulin regimen in the Diabetes Control and Complications Trial (DCCT) (30), data suggests that CSII may reduce the rates of severe hypoglycemia compared with MDI (29,31–33). There is also evidence that CSII may reduce DKA risk (29,34) and diabetes complications, in particular, retinopathy and peripheral neuropathy in youth, compared with MDI (35). Finally, treatment satisfaction and quality-of-life measures improved on CSII compared with MDI (36,37). Therefore, CSII can be used safely and effectively in youth with type 1 diabetes to assist with achieving targeted glycemic control while reducing the risk of hypoglycemia and DKA, improving quality of life and preventing long-term complications. Based on patient-provider shared decision making, insulin pumps may be considered in all pediatric patients. In particular, pump therapy may be the preferred mode of insulin delivery for children under 7 years of age (38). Because of a paucity of data in adolescents and youths with Type 2 diabetes, there is insufficient evidence to make recommendations.

Common barriers to pump therapy adoption in children and adolescents are concerns regarding the physical interference of the device, discomfort with idea of having a device on the body therapeutic effectiveness, and financial burden (27,39).

SELF-MONITORING OF BLOOD GLUCOSE

Recommendations

7.6 Most patients using intensive insulin regimens (multiple daily injections or insulin pump therapy) should assess glucose levels using self-monitoring of blood glucose (or continuous glucose monitoring) prior to meals and snacks, at bedtime, occasionally postprandially, prior to exercise, when they suspect low blood glucose, after treating low blood glucose until they are normoglycemic, and prior to critical tasks such as driving. B

7.7 When prescribed as part of a broad educational program, self-monitoring of blood glucose may help to guide treatment decisions and/or self-management for patients taking less frequent insulin injections. B

7.8 When prescribing self-monitoring of blood glucose, ensure that patients receive ongoing instruction and regular evaluation of technique, results, and their ability to use data from self-monitoring of blood glucose to adjust therapy. Similarly, continuous glucose monitoring use requires robust and ongoing diabetes education, training, and support. E

Major clinical trials of insulin-treated patients have included self-monitoring of blood glucose (SMBG) as part of multifactorial interventions to demonstrate the benefit of intensive glycemic control on diabetes complications (40). SMBG is thus an integral component of effective therapy of patients taking insulin. In recent years, continuous glucose monitoring (CGM) has emerged as a complementary method for the assessment of glucose levels (discussed below). Glucose monitoring allows patients to evaluate their individual response to therapy and assess whether glycemic targets are being safely achieved. Integrating results into diabetes management can be a useful tool for guiding medical nutrition therapy and physical activity, preventing hypoglycemia, and adjusting medications (particularly prandial insulin doses). The patient’s specific needs and goals should dictate SMBG frequency and timing or the consideration of CGM use.

Optimizing Self-monitoring of Blood Glucose and Continuous Glucose Monitor Use

SMBG and CGM accuracy is dependent on the instrument and user, so it is important to evaluate each patient’s monitoring technique, both initially and at regular intervals thereafter. Optimal use of SMBG and CGM requires proper review and interpretation of the data, by both the patient and the provider, to ensure that data are used in an effective and timely manner. For patients with type 1 diabetes using CGM, the greatest predictor of A1C lowering for all age-groups was frequency of sensor use, which was highest in those aged ≥25 years and lower in younger age-groups (41). Similarly, for SMBG in patients with type 1 diabetes, there is a correlation between greater SMBG frequency and lower A1C (42). Among patients who check their blood glucose at least once daily, many report taking no action when results are high or low (43). Patients should be taught how to use SMBG and/or CGM data to adjust food intake, exercise, or pharmacologic therapy to achieve specific goals. The ongoing need for and frequency of SMBG should be reevaluated at each routine visit to avoid overuse, particularly if SMBG is not being used effectively for self-management (43–45).

For Patients on Intensive Insulin Regimens

SMBG or CGM is especially important for insulin-treated patients to monitor for and prevent hypoglycemia and hyperglycemia. Most patients using intensive insulin regimens (MDI or insulin pump therapy) should assess glucose levels using SMBG or a CGM prior to meals and snacks, at bedtime, occasionally postprandially, prior to exercise, when they suspect low blood glucose, after treating low blood glucose until they are normoglycemic, and prior to critical tasks such as driving. For many patients using SMBG, this will require testing up to 6–10 times daily, although individual needs may vary. A database study of almost 27,000 children and adolescents with type 1 diabetes showed that, after adjustment for multiple confounders, increased daily frequency of SMBG was significantly associated with lower A1C (~0.2% per additional test per day) and with fewer acute complications (46).

For Patients Using Basal Insulin and/or Oral Agents

The evidence is insufficient regarding when to prescribe SMBG and how often testing is needed for insulin-treated patients who do not use intensive insulin regimens, such as those with type 2 diabetes using basal insulin with or without oral agents. However, for patients using basal insulin, assessing fasting glucose with SMBG to inform dose adjustments to achieve blood glucose targets results in lower A1C (47,48).
In people with type 2 diabetes not using insulin, routine glucose monitoring may be of limited additional clinical benefit. For some individuals, glucose monitoring can provide insight into the impact of diet, physical activity, and medication management on glucose levels. Glucose monitoring may also be useful in assessing hypoglycemia, glucose levels during intercurrent illness, or discrepancies between measured A1C and glucose levels when there is concern an A1C result may not be reliable in specific individuals. However, several randomized trials have called into question the clinical utility and cost-effectiveness of routine SMBG in noninsulin-treated patients (49–52). In a year-long study of insulin-naïve patients with suboptimal initial glycemic control, a group trained in structured SMBG (a paper tool was used at least quarterly to collect and interpret seven-point SMBG profiles taken on 3 consecutive days) reduced their A1C by 0.3% more than the control group (53). A trial of once-daily SMBG that included enhanced patient feedback through messaging found no clinically or statistically significant change in A1C at 1 year (52). Meta-analyses have suggested that SMBG can reduce A1C by 0.25–0.3% at 6 months (54–56), but the effect was attenuated at 12 months in one analysis (54). Reductions in A1C were greater (−0.3%) in trials where structured SMBG data were used to adjust medications but not significant without such structured diabetes therapy adjustment (56). A key consideration is that performing SMBG alone does not lower blood glucose levels. To be useful, the information must be integrated into clinical and self-management plans.

Glucose Meter Accuracy

Recommendation 7.9 Health care providers should be aware of the medications and other factors that can interfere with glucose meter accuracy and choose appropriate devices for their patients based on these factors. E

Glucose meters meeting U.S. Food and Drug Administration (FDA) guidance for meter accuracy provide the most reliable data for diabetes management. There are several current standards for accuracy of blood glucose monitors, but the two most used are those of the International Organization for Standardization (ISO 15197:2013) and the FDA. The current ISO and FDA standards are compared in Table 7.1. In Europe, currently marketed monitors must meet current ISO standards. In the U.S., currently marketed monitors must meet the standard under which they were approved, which may not be the current standard. Moreover, the monitoring of current accuracy is left to the manufacturer and not routinely checked by an independent source.

Patients assume their glucose monitor is accurate because it is FDA cleared, but often that is not the case. There is substantial variation in the accuracy of widely used blood glucose monitoring systems. The Diabetes Technology Society Blood Glucose Monitoring System Surveillance Program provides information on the performance of devices used for SMBG (https://www.diabetetechnology.org/surveillance.shtml). In a recent analysis, the program found that only 6 of the top 18 glucose meters met the accuracy standard (57).

Factors Limiting Accuracy

Counterfeit Strips. Patients should be advised against purchasing or reselling preowned or second-hand test strips, as these may give incorrect results. Only unopened vials of glucose test strips should be used to ensure SMBG accuracy.

Oxygen. Currently available glucose monitors utilize an enzymatic reaction linked to an electrochemical reaction, either glucose oxidase or glucose dehydrogenase (58). Glucose oxidase monitors are sensitive to the oxygen available and should only be used with capillary blood in patients with normal oxygen saturation. Higher oxygen tensions (i.e., arterial blood or oxygen therapy) may result in false low-glucose readings, and low oxygen tensions (i.e., high altitude, hypoxia, or venous blood readings) may lead to false high-glucose readings. Glucose dehydrogenase monitors are not sensitive to oxygen.

Temperature. Because the reaction is sensitive to temperature, all monitors have an acceptable temperature range (58). Most will show an error if the temperature is unacceptable, but a few will provide a reading and a message indicating that the value may be incorrect.

Interfering Substances. There are a few physiologic and pharmacologic factors that interfere with glucose readings. Most interfere only with glucose oxidase systems (58). They are listed in Table 7.2.

CONTINUOUS GLUCOSE MONITORS

Recommendations

7.10 Sensor-augmented pump therapy may be considered for children, adolescents, and adults to improve glycemic control without an increase in hypoglycemia or severe hypoglycemia. Benefits correlate with adherence to ongoing use of the device. A

7.11 When prescribing continuous glucose monitoring, robust diabetes education, training, and support are required for optimal continuous glucose monitor implementation and ongoing use. E

Table 7.1—Comparison of ISO 15197 and FDA blood glucose meter accuracy standards

<table>
<thead>
<tr>
<th>Setting</th>
<th>FDA</th>
<th>ISO 15197-2013</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>†</td>
<td>‡</td>
</tr>
<tr>
<td>Home use</td>
<td>95% within 15% for all BG in the usable BG range†</td>
<td>95% within 15% for BG ≥100 mg/dL</td>
</tr>
<tr>
<td></td>
<td>99% within 20% for all BG in the usable BG range‡</td>
<td>95% within 15 mg/dL for BG <100 mg/dL</td>
</tr>
<tr>
<td></td>
<td>95% within 12% for BG ≥75 mg/dL</td>
<td>99% in A or B region of Consensus Error Grid‡</td>
</tr>
<tr>
<td></td>
<td>95% within 12 mg/dL for BG <75 mg/dL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>98% within 15% for BG ≥75 mg/dL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>98% within 15 mg/dL for BG <75 mg/dL</td>
<td></td>
</tr>
</tbody>
</table>

BG, blood glucose. To convert mg/dL to mmol/L, see http://www.endmemo.com/medical/unitconvert/Glucose.php. †The range of BG values for which the meter has been proven accurate and will provide readings (other than low, high, or error). ‡Values outside of the “clinically acceptable” A and B regions are considered “outlier” readings and may be dangerous to use for therapeutic decisions. 128.
People who have been successfully using continuous glucose monitors should have continued access across third-party payers. E

CGM measures interstitial glucose (which correlates well with plasma glucose). There are two types of CGM devices. Most CGM devices are real-time CGM, which continuously report glucose levels and include alarms for hypoglycemic and hyperglycemic excursions. The other type of device is intermittently scanning CGM (isCGM), which is approved for adult use only. isCGM, discussed more fully below, does not have alarms and does not communicate continuously, only on demand. It is reported to have a lower cost than systems with automatic alerts.

For some CGM systems, SMBG is required to make treatment decisions, although a randomized controlled trial of 226 adults suggested that an enhanced CGM device could be used safely and effectively without regular confirmatory SMBG in patients with well-controlled type 1 diabetes at low risk of severe hypoglycemia (59). Two CGM devices are now approved by the FDA for making treatment decisions without SMBG confirmation, sometimes called adjunctive use (60,61).

The abundance of data provided by CGM offers opportunities to analyze patient data more granularly than was previously possible, providing additional information to aid in achieving glycemic targets. A variety of metrics have been proposed (62). As recently reported, the metrics may include: 1) average glucose; 2) percentage of time in hypoglycemic ranges, i.e., <54 mg/dL (level 2), 54–70 mg/dL (level 1) (62); 3) percentage of time in target range, i.e., 70–180 mg/dL (3.9–9.9 mmol/L); 4) percentage of time in hyperglycemic range, i.e., ≥180 mg/dL (62). To make these metrics more actionable, standardized reports with visual cues, such as an ambulatory glucose profile (62), may help the patient and the provider interpret the data and use it to guide treatment decisions.

In addition, while A1C is well established as an important risk marker for diabetes complications, with the increasing use of CGM to help facilitate safe and effective diabetes management, it is important to understand how CGM metrics, such as mean glucose and A1C correlate. Estimated A1C (eA1C) is a measure converting the mean glucose from CGM or self-monitored blood glucose readings, using a formula derived from glucose readings from a population of individuals, into an estimate of a simultaneously measured laboratory A1C. Recently, the eA1C was renamed the glucose management indicator (GMI), and a new formula was generated for converting CGM-derived mean glucose to GMI based on recent clinical trials using the most accurate CGM systems available. This provided a new way to use CGM data to estimate A1C (63).

Real-time Continuous Glucose Monitor Use in Youth

Recommendation 7.13 Real-time continuous glucose monitoring should be considered in children and adolescents with type 1 diabetes, whether using multiple daily injections or continuous subcutaneous insulin infusion, as an additional tool to help improve glucose control and reduce the risk of hypoglycemia. Benefits of continuous glucose monitoring correlate with adherence to ongoing use of the device. B

Data regarding use of real-time CGM in youth consist of findings from RCTs and small observational studies, as well as analysis of data collected by registries. Some of the RCTs have included both adult and pediatric participants (41,64–66), while others have only included pediatric participants (67) or limited the analysis of larger studies to just the pediatric participants (41). Given the feasibility problems of performing RCTs in very young children, small observational studies have also provided data on real-time CGM use in the youngest age groups (68–70). Finally, while limited by the observational nature, registry data provide some evidence of real-world use of the technologies (71,72).

Impact on Glycemic Control

When data from adult and pediatric participants is analyzed together, CGM use in RCTs has been associated with reduction in A1C levels (64–66). Yet, in the JDRF CGM trial, when youth were analyzed by age-group (8- to 14-year-olds and 15- to 24-year-olds), no change in A1C was seen, likely due to poor CGM adherence (41). Indeed, in a secondary analysis of that RCT’s data in both pediatric cohorts, those who utilized the sensor ≥6 days/week had an improvement in their glycemic control (73). One critical component to success with CGM is near-daily wearing of the device (64,74–76).

Though data from small observational studies demonstrate that CGM can be worn by patients <8 years old and the use of CGM provides insight to glycemic patterns (68,69), an RCT in children aged 4 to 9 years did not demonstrate improvements in glycemic control following 6 months of CGM use (67). However, observational feasibility studies of toddlers demonstrated a high degree of parental satisfaction and sustained use of the devices despite the inability to change the degree of glycemic control attained (70). Registry data has also shown an association between CGM use and lower A1C levels (71,72), even when limiting assessment of CGM use to participants on injection therapy (72).

Impact on Hypoglycemia

Apart from the Sensing With Insulin pump Therapy to Control HbA1c (SWITCH) study, which showed a significant effect of adding CGM to insulin pump therapy on time spent in hypoglycemia (64), most studies focusing on glycemic management overall failed to demonstrate a significant or relevant reduction in level 1 hypoglycemia (41,65–67,77). Notably, RCTs primarily aimed at hypoglycemia prevention did demonstrate a significant reduction in mild hypoglycemia in terms of reducing the time spent in hypoglycemia by approximately 40% and reducing the number of level 1 hypoglycemia events per day (78,79).
Real-time Continuous Glucose Monitor Use in Adults

Recommendations

7.14 When used properly, real-time continuous glucose monitoring in conjunction with intensive insulin regimens is a useful tool to lower A1C in adults with type 1 diabetes who are not meeting glycemic targets. A

7.15 Real-time continuous glucose monitoring may be a useful tool in those with hypoglycemia unawareness and/or frequent hypoglycemic episodes. B

7.16 Real-time continuous glucose monitoring should be used as close to daily as possible for maximal benefit. A

7.17 Real-time continuous glucose monitoring may be used effectively to improve A1C levels and neonatal outcomes in pregnant women with type 1 diabetes. B

7.18 Sensor-augmented pump therapy with automatic low-glucose suspend may be considered for adults with type 1 diabetes at high risk of hypoglycemia to prevent episodes of hypoglycemia and reduce their severity. B

Data exist to support the use of CGM in adults, both those on MDI and on CSII. In terms of randomized controlled trials in people with type 1 diabetes, there are four studies in adults with A1C as the primary outcome (80–84), three studies in adults with hypoglycemia as the primary outcome (85–87), four studies in adults and children with A1C as the primary outcome (41,64–66), and three studies in adults and children with hypoglycemia as a primary outcome (41,78,88). There are three studies in adults with type 1 or type 2 diabetes (89–91) and four studies with adults with type 2 diabetes (92–95). Finally, there are three studies that have been done in pregnant women with prepregnancy diabetes or gestational diabetes mellitus (96–98). Overall, excluding studies evaluating pediatric patients alone or pregnant women, 2,984 people with type 1 or type 2 diabetes have been studied to assess the benefits of CGM.

Primary Outcome: A1C Reduction

In general, A1C reduction was shown in studies where the baseline A1C was higher. In two larger studies in adults with type 1 diabetes that assessed the benefit of CGM in patients on MDI, there were significant reductions in A1C: −0.6% in one (80,81) and −0.43% in the other (82). No reduction in A1C was seen in a small study performed in underserved, less well-educated adults with type 1 diabetes (83). In the adult subset of the JDRF CGM study, there was a significant reduction in A1C of −0.53% (71) in patients who were primarily treated with insulin pump therapy. Better adherence in wearing the CGM device resulted in a greater likelihood of an improvement in glycemic control (41,84).

Studies in people with type 2 diabetes are heterogeneous in design—in two, participants were using basal insulin with oral agents or oral agents alone (65,95); in one, individuals were on MDI alone (92); and in another, participants were on CSII or MDI (79). The findings in studies with MDI alone (92) and in two studies in people using oral agents with or without insulin (93,95) showed significant reductions in A1C levels.

Primary Outcome: Hypoglycemia

In studies in adults where reduction in episodes of hypoglycemia was the primary end point, significant reductions were seen in individuals with type 1 diabetes on MDI or CSII (85–87). In one study in patients who were at higher risk for episodes of hypoglycemia (87), there was a reduction in rates of all levels of hypoglycemia (see Section 6 “Glycemic Targets” for hypoglycemia definitions). The Multiple Daily Injections and Continuous Glucose Monitoring in Diabetes (DIAMOND) study in people with type 2 diabetes on MDI did not show a reduction in hypoglycemia (92). Studies in individuals with type 2 diabetes on oral agents with or without insulin did not show reductions in rates of hypoglycemia (93,95). CGM may be particularly useful in insulin-treated patients with hypoglycemia unawareness and/or frequent hypoglycemic episodes, although studies have not shown consistent reductions in severe hypoglycemia (41,64,65). Sensor-augmented pumps that suspend insulin when glucose is low or predicted to go low within the next 30 min have been approved by the FDA. The Automation to Simulate Pancreatic Insulin Response (ASPIRE) trial of 247 patients with type 1 diabetes and documented nocturnal hypoglycemia showed that sensor-augmented insulin pump therapy with a low-glucose suspend function significantly reduced nocturnal hypoglycemia over 3 months without increasing A1C levels (66). In a different sensor-augmented pump, predictive low-glucose suspend reduced time spent with glucose <70 mg/dL from 3.6% at baseline to 2.6% (3.2% with sensor-augmented pump therapy without predictive low glucose suspend) without rebound hyperglycemia during a 6-week randomized crossover trial (95a). These devices may offer the opportunity to reduce hypoglycemia for those with a history of nocturnal hypoglycemia.

Real-time Continuous Glucose Monitor Use in Pregnancy

One well-designed RCT showed a reduction in A1C levels in adult women with type 1 diabetes on MDI or CSII who were pregnant (96). Neonatal outcomes were better when the mother used CGM during pregnancy (80). Two studies employing intermittent use of real-time CGM showed no difference in neonatal outcomes in women with type 1 diabetes (97) or gestational diabetes mellitus (98).

Intermittently Scanned Continuous Glucose Monitor Use

Recommendation

7.19 Intermittently scanned continuous glucose monitor use may be considered as a substitute for self-monitoring of blood glucose in adults with diabetes requiring frequent glucose testing. C

isCGM (sometimes referred to as “flash” CGM) is a CGM that measures glucose in interstitial fluid through a <0.4 mm-thick filament that is inserted under the skin. It has been available in Europe since 2014 and was approved by the FDA for use in adults in the U.S. in 2017. The personal version of isCGM has a receiver that, after scanning over the sensor by the individual, displays real-time glucose values and glucose trend arrows. The data can be uploaded and a report...
created using available software. In the professional version, the patient does not carry a receiver; the data are blinded to the patient and the device is downloaded in the diabetes care provider’s office using the provider’s receiver and the software. The isCGM sensor is smaller than those of other systems and is water resistant. In the U.S., the FDA now requires a 1-h start-up time after activation of the system, and it can be worn up to 14 days. The isCGM does not require calibration with SMBG because it is factory calibrated. Acetaminophen does not cause interference with glucose readings. The mean absolute relative difference reported by the manufacturer is 9.4%. It measures glucose every minute, records measurements every 15 min, and displays up to 8 h of data. As opposed to real-time CGM systems, isCGM has no alarms. The direct costs of isCGM are lower than those of real-time CGM systems. In general, both the consumer and professional versions are covered by most commercial insurance carriers and eligible Medicare programs. Information on Medicaid coverage was not available at the time of this writing.

Studies in adults with diabetes indicate isCGM has acceptable accuracy when compared with SMBG (99–102), although the accuracy may be lower at high and/or low glucose levels (103,104). Studies comparing the accuracy of isCGM with real-time CGM show conflicting results (102,104,105). isCGM may decrease the risk of hypoglycemia in individuals with type 1 (85) or type 2 diabetes (94). There are a growing number of studies suggesting similar good performance and potential for benefit in special populations, including pregnant women with diabetes (106), individuals with type 1 diabetes and hypoglycemia unawareness (107), and children (108–110), although accuracy (mean absolute relative difference) could be decreased in younger children (109). Contact dermatitis has been reported and linked to the presence of isobornyl acrylate, a structural plastic of the device, which is a skin sensitizer and can cause an additional spreading allergic reaction (111–113).

There are several published reviews of data available on isCGM (114–116). The Norwegian Institute for Public Health conducted an assessment of isCGM clinical effectiveness, cost-effectiveness, and safety for individuals with type 1 and type 2 diabetes, based on data available until January 2017 (114). The authors concluded that, although there were few quality data available at the time of the report, isCGM may increase treatment satisfaction, increase time in range, and reduce frequency of nocturnal hypoglycemia, without differences in A1C or quality of life or serious adverse events. The Canadian Agency for Drugs and Technologies in Health reviewed existing data on isCGM performance and accuracy, hypoglycemia, effect on A1C, and patient satisfaction and quality of life and concluded that the system could replace SMBG in particular in patients who require frequent testing (115). The last review published at the time of this report (116) also supported the use of isCGM as a more affordable alternative to real-time CGM systems for individuals with diabetes who are on intensive insulin therapy.

AUTOMATED INSULIN DELIVERY

<table>
<thead>
<tr>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.20 Automated insulin delivery systems may be considered in children (≥7 years) and adults with type 1 diabetes to improve glycemic control. B</td>
</tr>
</tbody>
</table>

To provide physiologic insulin delivery, insulin doses need to be adjusted based on glucose values, which is now feasible with automated insulin delivery systems consisting of three components: an insulin pump, a continuous glucose sensor, and an algorithm that determines insulin delivery. With these systems, insulin delivery cannot only be suspended but also increased or decreased based on sensor glucose values. Emerging evidence suggests such systems may lower the risk of exercise-related hypoglycemia (117) and may have psychosocial benefits (118–121).

While eventually insulin delivery in closed-loop systems may be truly automated, meals must currently be announced. A so-called hybrid approach, hybrid closed-loop (HCL), has been adopted in first-generation closed-loop systems and requires users to bolus for meals and snacks. The FDA has approved the first HCL system for use in those as young as 7 years of age. A 3-month noncontrolled trial using this device (n = 124) demonstrated safety (122) and improved A1C in adults (reduction from 7.3 ± 0.9% to 6.8 ± 0.6%) and adolescents (7.7 ± 0.8% to 7.1 ± 0.6%) (123).

To date, the longest outpatient RCTs lasted 12 weeks and compared HCL treatment (a system that is not currently FDA approved) to sensor-augmented pumps in adults and children as young as 6 years of age (n = 86) with A1C levels above target at baseline. Compared with sensor-augmented pump therapy, the HCL system reduced the risk for hypoglycemia and improved glucose control in A1C levels (124).

Future Systems

A multitude of other automated insulin delivery systems are currently being investigated, including those with dual hormones (insulin and glucagon or insulin and pramlintide). Furthermore, some patients have created do-it-yourself systems through guidance from online communities, although these are not FDA approved or recommended.

References

treated with multiple daily insulin injections (Hyana), a multicentre, randomised controlled trial. Lancet 2018;391:1367–1377.
8. Obesity Management for the Treatment of Type 2 Diabetes: Standards of Medical Care in Diabetes—2019

Diabetes Care 2019;42(Suppl. 1):S81–S89 | https://doi.org/10.2337/dc19-S008

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

There is strong and consistent evidence that obesity management can delay the progression from prediabetes to type 2 diabetes (1–5) and is beneficial in the treatment of type 2 diabetes (6–17). In patients with type 2 diabetes who are overweight or obese, modest and sustained weight loss has been shown to improve glycemic control and to reduce the need for glucose-lowering medications (6–8). Small studies have demonstrated that in patients with type 2 diabetes and obesity, more extreme dietary energy restriction with very low-calorie diets can reduce A1C to <6.5% (48 mmol/mol) and fasting glucose to <126 mg/dL (7.0 mmol/L) in the absence of pharmacologic therapy or ongoing procedures (10,18,19). Weight loss–induced improvements in glycemia are most likely to occur early in the natural history of type 2 diabetes when obesity-associated insulin resistance has caused reversible β-cell dysfunction but insulin secretory capacity remains relatively preserved (8,11,19,20). The goal of this section is to provide evidence-based recommendations for weight-loss therapy, including diet, behavioral, pharmacologic, and surgical interventions, for obesity management as treatment for hyperglycemia in type 2 diabetes.

ASSESSMENT

Recommendation 8.1 At each patient encounter, BMI should be calculated and documented in the medical record.

At each routine patient encounter, BMI should be calculated as weight divided by height squared (kg/m²) (21). BMI should be classified to determine the presence of overweight or obesity, discussed with the patient, and documented in the patient record.

© 2018 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.
record. In Asian Americans, the BMI cutoff points to define overweight and obesity are lower than in other populations (Table 8.1) (22,23). Providers should advise patients who are overweight or obese that, in general, higher BMIs increase the risk of cardiovascular disease and all-cause mortality. Providers should assess each patient’s readiness to achieve weight loss and jointly determine weight-loss goals and intervention strategies. Strategies may include diet, physical activity, behavioral therapy, pharmacologic therapy, and metabolic surgery (Table 8.1). The latter two strategies may be prescribed for carefully selected patients as adjuncts to diet, physical activity, and behavioral therapy.

Diet, Physical Activity, and Behavioral Therapy

Recommendations

8.2 Diet, physical activity, and behavioral therapy designed to achieve and maintain >5% weight loss should be prescribed for patients with type 2 diabetes who are overweight or obese and ready to achieve weight loss. A

8.3 Such interventions should be high intensity (≥16 sessions in 6 months) and focus on diet, physical activity, and behavioral strategies to achieve a 500–750 kcal/day energy deficit. A

8.4 Diets should be individualized, as those that provide the same caloric restriction but differ in protein, carbohydrate, and fat content are equally effective in achieving weight loss. A

8.5 For patients who achieve short-term weight-loss goals, long-term (≥1 year) comprehensive weight-maintenance programs should be prescribed. Such programs should provide at least monthly contact and encourage ongoing monitoring of body weight (weekly or more frequently) and/or other self-monitoring strategies, such as tracking intake, steps, etc.; continued consumption of a reduced-calorie diet; and participation in high levels of physical activity (200–300 min/week). A

8.6 To achieve weight loss of >5%, short-term (3-month) interventions that use very low-calorie diets (≤800 kcal/day) and total meal replacements may be prescribed for carefully selected patients by trained practitioners in medical care settings with close medical monitoring. To maintain weight loss, such programs must incorporate long-term comprehensive weight-maintenance counseling. B

Among patients with type 2 diabetes who are overweight or obese and have inadequate glycemic, blood pressure, and lipid control and/or other obesity-related medical conditions, lifestyle changes that result in modest and sustained weight loss produce clinically meaningful reductions in blood glucose, A1C, and triglycerides (6–8). Greater weight loss produces even greater benefits, including reductions in blood pressure, improvements in LDL and HDL cholesterol, and reductions in the need for medications to control blood glucose, blood pressure, and lipids (6–8,24), and may result in achievement of glycemic goals in the absence of antihyperglycemia agent use in some patients (25).

Look AHEAD Trial

Although the Action for Health in Diabetes (Look AHEAD) trial did not show that an intensive lifestyle intervention reduced cardiovascular events in adults with type 2 diabetes who were overweight or obese (26), it did show the feasibility of achieving and maintaining long-term weight loss in patients with type 2 diabetes. In the Look AHEAD intensive lifestyle intervention group, mean weight loss was 4.7% at 8 years (27). Approximately 50% of intensive lifestyle intervention participants lost and maintained ≥5% and 27% lost and maintained ≥10% of their initial body weight at 8 years (27). Participants randomly assigned to the intensive lifestyle group achieved equivalent risk factor control but required fewer glucose-, blood pressure-, and lipid-lowering medications than those randomly assigned to standard care. Secondary analyses of the Look AHEAD trial and other large cardiovascular outcome studies document other benefits of weight loss in patients with type 2 diabetes, including improvements in mobility, physical and sexual function, and health-related quality of life (28). A post hoc analysis of the Look AHEAD study suggests that heterogeneous treatment effects may have been present. Participants who had moderately or poorly controlled diabetes (A1C ≥6.8% [51 mmol/mol]) as well as both those with well-controlled diabetes (A1C <6.8% [51 mmol/mol]) and good self-reported health were found to have significantly reduced cardiovascular events with intensive lifestyle intervention during follow-up (29).

Lifestyle Interventions

Significant weight loss can be attained with lifestyle programs that achieve a 500–750 kcal/day energy deficit, which in most cases is approximately 1,200–1,500 kcal/day for women and 1,500–1,800 kcal/day for men, adjusted for the individual’s baseline body weight. Weight loss of 3–5% is the minimum

Table 8.1—Treatment options for overweight and obesity in type 2 diabetes

<table>
<thead>
<tr>
<th>BMI category (kg/m²)</th>
<th>Treatment</th>
<th>25.0–26.9 (or 23.0–26.9)*</th>
<th>27.0–29.9 (or 27.5–32.4)*</th>
<th>30.0–34.9 (or 32.5–37.4)*</th>
<th>35.0–39.9 (or 37.5–41.0)*</th>
<th>≥40 (or ≥41.0)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet, physical activity, and behavioral therapy</td>
<td>†††</td>
<td>†</td>
<td>†</td>
<td>†</td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td>Pharmacotherapy</td>
<td>†</td>
<td>†</td>
<td>†</td>
<td>†</td>
<td>†</td>
<td>†</td>
</tr>
<tr>
<td>Metabolic surgery</td>
<td>† †</td>
<td>†</td>
<td>†</td>
<td>†</td>
<td>†</td>
<td>†</td>
</tr>
</tbody>
</table>

*† indicates treatment may be indicated for selected motivated patients.

*A cutoff points for Asian American individuals. ††† indicates treatment may be indicated for selected motivated patients.
necessary for any clinical benefit (21,30). However, weight-loss benefits are progressive; more intensive weight-loss goals (>5%, >7%, >15%, etc.) may be pursued if needed to achieve a healthy weight and if they can be feasibly and safely attained.

These diets may differ in the types of foods they restrict (such as high-fat or high-carbohydrate foods) but are effective if they create the necessary energy deficit (21,31–33). Use of meal replacement plans prescribed by trained practitioners, with close patient monitoring, can be beneficial. Within the intensive lifestyle intervention group of the Look AHEAD trial, for example, use of a partial meal replacement plan was associated with improvements in diet quality (34). The diet choice should be based on the patient’s health status and preferences.

Intensive behavioral lifestyle interventions should include ≥16 sessions in 6 months and focus on diet, physical activity, and behavioral strategies to achieve an ~500–750 kcal/day energy deficit. Interventions should be provided by trained interventionists in either individual or group sessions (30).

Patients with type 2 diabetes who are overweight or obese and have lost weight during the 6-month intensive behavioral lifestyle intervention should be enrolled in long-term (≥1 year) comprehensive weight-loss maintenance programs that provide at least monthly contact with a trained interventionist and focus on ongoing monitoring of body weight (weekly or more frequently) and/or other self-monitoring strategies such as tracking intake, steps, etc.; continued consumption of a reduced-calorie diet; and participation in high levels of physical activity (200–300 min/week (35). Some commercial and proprietary weight-loss programs have shown promising weight-loss results (36).

When provided by trained practitioners in medical care settings with close medical monitoring, short-term (3-month) interventions that use very low-calorie diets (defined as ≤800 kcal/day) and total meal replacements may achieve greater short-term weight loss (10%–15%) than intensive behavioral lifestyle interventions that typically achieve 5% weight loss. However, weight regain following the cessation of very low-calorie diets is greater than following intensive behavioral lifestyle interventions unless a long-term comprehensive weight-loss maintenance program is provided (37,38).

PHARMACOTHERAPY

Recommendations

8.7 When choosing glucose-lowering medications for overweight or obese patients with type 2 diabetes, consider their effect on weight. E

8.8 Whenever possible, minimize medications for comorbid conditions that are associated with weight gain. E

8.9 Weight-loss medications are effective as adjuncts to diet, physical activity, and behavioral counseling for selected patients with type 2 diabetes and BMI ≥27 kg/m². Potential benefits must be weighed against the potential risks of the medications. A

8.10 If a patient’s response to weight-loss medications is ≤5% weight loss after 3 months or if there are significant safety or tolerability issues at any time, the medication should be discontinued and alternative medications or treatment approaches should be considered. A

Antihyperglycemia Therapy

Agents associated with varying degrees of weight loss include metformin, α-glucosidase inhibitors, sodium–glucose cotransporter 2 inhibitors, glucagon-like peptide 1 receptor agonists, and amylin mimetics. Dipeptidyl peptidase 4 inhibitors are weight neutral. Unlike these agents, insulin secretagogues, thiazolidinediones, and insulin often cause weight gain (see Section 9 “Pharmacologic Approaches to Glycemic Treatment”).

A recent meta-analysis of 227 randomized controlled trials of antihyperglycemia treatments in type 2 diabetes found that A1C changes were not associated with baseline BMI, indicating that patients with obesity can benefit from the same types of treatments for diabetes as normal-weight patients (39).

Concomitant Medications

Providers should carefully review the patient’s concomitant medications and, whenever possible, minimize or provide alternatives for medications that promote weight gain. Medications associated with weight gain include antipsychotics (e.g., clozapine, olanzapine, risperidone, etc.) and antidepressants (e.g., tricyclic antidepressants, selective serotonin reuptake inhibitors, and monoamine oxidase inhibitors), glucocorticoids, injectable progestins, anticonvulsants including gabapentin, and possibly sedating antihistamines and anticholinergics (40).

Approved Weight-Loss Medications

The U.S. Food and Drug Administration (FDA) has approved medications for both short-term and long-term weight management as adjuncts to diet, exercise, and behavioral therapy. Nearly all FDA-approved medications for weight loss have been shown to improve glycemic control in patients with type 2 diabetes and delay progression to type 2 diabetes in patients at risk (41). Phentermine is indicated as short-term (≤12 weeks) treatment (42). Five weight-loss medications (or combination medications) are FDA-approved for long-term use (more than a few weeks) by patients with BMI ≥27 kg/m² with one or more obesity-associated comorbid conditions (e.g., type 2 diabetes, hypertension, and dyslipidemia) who are motivated to lose weight (41). Medications approved by the FDA for the treatment of obesity and their advantages and disadvantages are summarized in Table 8.2. The rationale for weight-loss medications is to help patients to more consistently adhere to low-calorie diets and to reinforce lifestyle changes. Providers should be knowledgeable about the product label and should balance the potential benefits of successful weight loss against the potential risks of the medication for each patient. These medications are contraindicated in women who are pregnant or actively trying to conceive. Women of reproductive potential must be counseled regarding the use of reliable methods of contraception.

Assessing Efficacy and Safety

Efficacy and safety should be assessed at least monthly for the first 3 months of treatment. If a patient’s response is deemed insufficient (weight loss <5%) after 3 months or if there are significant safety or tolerability issues at any time, the medication should be discontinued and alternative medications or treatment approaches should be considered.
<table>
<thead>
<tr>
<th>Medication name</th>
<th>Typical adult maintenance dose</th>
<th>Average wholesale price (30-day supply)</th>
<th>National Average Drug Acquisition Cost (30-day supply)</th>
<th>1-Year (52- or 56-week) mean weight loss (% loss from baseline)</th>
<th>Treatment arm</th>
<th>Weight loss (% loss from baseline)</th>
<th>Common side effects</th>
<th>Possible safety concerns/considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term treatment (<12 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phentermine (108)</td>
<td>8–37.5 mg q.d.*</td>
<td>$5–$56 (37.5 mg dose)</td>
<td>$4 (37.5 mg dose)</td>
<td>15 mg q.d.†</td>
<td>15 mg q.d.†</td>
<td>6.1</td>
<td>Dry mouth, insomnia, dizziness, irritability</td>
<td>Risk of severe hypertension</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.5 mg q.d.† PBO</td>
<td>7.5 mg q.d.† PBO</td>
<td>5.5</td>
<td></td>
<td>Contraindicated for use in combination with monoamine oxidase inhibitors</td>
</tr>
<tr>
<td>Orlistat (3)</td>
<td>60 mg t.i.d. (OTC)</td>
<td>$41–$82</td>
<td>$42</td>
<td>120 mg t.i.d. t.i.d.</td>
<td>120 mg t.i.d. t.i.d.</td>
<td>9.6</td>
<td>Abdominal pain, flatulence, fecal urgency, back pain, headache</td>
<td>Potential malabsorption of fat-soluble vitamins (A, D, E, K) and of certain medications (e.g., cyclosporine, thyroid hormone, anticonvulsants, etc.)</td>
</tr>
<tr>
<td></td>
<td>120 mg t.i.d. (Rx)</td>
<td>$748</td>
<td>$556</td>
<td></td>
<td></td>
<td>5.6</td>
<td></td>
<td>Rare cases of severe liver injury reported</td>
</tr>
<tr>
<td>Selective serotonin (5-HT) 5-HT₂C receptor agonist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cholelithiasis</td>
</tr>
<tr>
<td>Lorcaserin (14)</td>
<td>10 mg b.i.d.</td>
<td>$318</td>
<td>$255</td>
<td>10 mg b.i.d. PBO</td>
<td>10 mg b.i.d. PBO</td>
<td>4.5</td>
<td>Headache, nausea, dizziness, fatigue, nasopharyngitis</td>
<td>Serotonin syndrome—and neuroleptic malignant syndrome–like reactions theoretically possible when coadministered with other serotoninergic or antidopaminergic agents</td>
</tr>
<tr>
<td>Lorcaserin XR</td>
<td>20 mg q.d.</td>
<td>$318</td>
<td>$254</td>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
<td>Monitor for depression or suicidal thoughts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Worsening hypertension</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Avoid in liver and renal failure</td>
</tr>
<tr>
<td>Sympathomimetic amine anorectic/antiepileptic combination</td>
<td></td>
<td></td>
<td></td>
<td>15 mg/92 mg q.d.</td>
<td></td>
<td>15 mg/92 mg q.d.</td>
<td></td>
<td>7.5 mg/46 mg q.d.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cognitive impairment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acute angle-closure glaucoma</td>
</tr>
<tr>
<td>Opioid antagonist/antidepressant combination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naltrexone/ bupropion ER (15)</td>
<td>8 mg/90 mg, 2 tablets b.i.d.</td>
<td>$334</td>
<td>$267</td>
<td>16 mg/ 180 mg b.i.d.</td>
<td>16 mg/ 180 mg b.i.d.</td>
<td>5.0</td>
<td>Constipation, nausea, headache, xerostomia, insomnia</td>
<td>Contraindicated in patients with uncontrolled hypertension and/or seizure disorders</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contraindicated for use with chronic opioid therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acute angle-closure glaucoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Black box warning: Risk of suicidal behavior/death</td>
</tr>
</tbody>
</table>

Continued on p. S85
Several minimally invasive medical devices have been recently approved by the FDA for short-term weight loss (43). It remains to be seen how these are used for obesity treatment. Given the high cost, extremely limited insurance coverage, and paucity of data in people with diabetes at this time, these are not considered to be the standard of care for obesity management in people with type 2 diabetes.

Metabolic Surgery Recommendations

8.11 Metabolic surgery should be recommended as an option to treat type 2 diabetes in appropriate surgical candidates with BMI ≥ 40 kg/m2, with BMI ≥ 37.5 kg/m2 in Asian Americans, and with BMI ≥ 35.0 kg/m2–39.9 kg/m2 (32.5–37.4 kg/m2 in Asian Americans), who do not achieve durable weight loss and improve comorbidities, including cardiovascular disease, diabetes, and hypercholesterolemia among individuals who do not achieve durable weight loss and improve comorbidities, including cardiovascular disease, diabetes, and hypercholesterolemia among individuals with BMI ≥ 35.0 kg/m2–39.9 kg/m2 (32.5–37.4 kg/m2 in Asian Americans).

8.12 Metabolic surgery may be considered as an option to treat type 2 diabetes in patients who do not achieve durable weight loss and improve comorbidities, including cardiovascular disease, diabetes, and hypercholesterolemia among individuals with BMI ≥ 35.0 kg/m2–39.9 kg/m2 (32.5–37.4 kg/m2 in Asian Americans) and in whom BMI ≥ 40 kg/m2, with BMI ≥ 37.5 kg/m2 in Asian Americans, and with BMI ≥ 35.0 kg/m2–39.9 kg/m2 (32.5–37.4 kg/m2 in Asian Americans), who do not achieve durable weight loss and improve comorbidities, including cardiovascular disease, diabetes, and hypercholesterolemia among individuals who do not achieve durable weight loss and improve comorbidities, including cardiovascular disease, diabetes, and hypercholesterolemia among individuals with BMI ≥ 35.0 kg/m2–39.9 kg/m2 (32.5–37.4 kg/m2 in Asian Americans).

8.13 Metabolic surgery should be performed in high-volume centers with multidisciplinary teams that understand and are experienced in the management of diabetes and gastrointestinal surgery.

8.14 Long-term lifestyle support and routine monitoring of micronutrient and nutritional status must be provided to patients after surgery, according to guidelines for postoperative management of metabolic surgery by national and international professional societies.

8.15 People presenting for metabolic surgery should receive a comprehensive readiness and mental health assessment.
Several gastrointestinal (GI) operations including partial gastrectomies and bariatric procedures (35) promote dramatic and durable weight loss and improvement of type 2 diabetes in many patients. Given the magnitude and rapidity of the effect of GI surgery on hyperglycemia and experimental evidence that rearrangements of GI anatomy similar to those in some metabolic procedures directly affect glucose homeostasis (36), GI interventions have been suggested as treatments for type 2 diabetes, and in that context they are termed “metabolic surgery.”

A substantial body of evidence has now been accumulated, including data from numerous randomized controlled (nonblinded) clinical trials, demonstrating that metabolic surgery achieves superior glycemic control and reduction of cardiovascular risk factors in patients with type 2 diabetes and obesity compared with various lifestyle/medical interventions (17). Improvements in microvascular complications of diabetes, cardiovascular disease, and cancer have been observed only in nonrandomized observational studies (44–53). Cohort studies attempting to match surgical and nonsurgical subjects suggest that the procedure may reduce longer-term mortality (45).

On the basis of this mounting evidence, several organizations and government agencies have recommended expanding the indications for metabolic surgery to include patients with type 2 diabetes who do not achieve durable weight loss and improvement in comorbidities (including hyperglycemia) with reasonable nonsurgical methods at BMIs as low as 30 kg/m² (27.5 kg/m² for Asian Americans) (54–61). Please refer to “Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations” for a thorough review (17).

Randomized controlled trials have documented diabetes remission during postoperative follow-up ranging from 1 to 5 years in 30–63% of patients with Roux-en-Y gastric bypass (RYGB), which generally leads to greater degrees and lengths of remission compared with other bariatric surgeries (17,62). Available data suggest an erosion of diabetes remission over time (63): 35–50% or more of patients who initially achieve remission of diabetes eventually experience recurrence. However, the median disease-free period among such individuals following RYGB is 8.3 years (64,65). With or without diabetes relapse, the majority of patients who undergo surgery maintain substantial improvement of glycemic control from baseline for at least 5 (66,67) to 15 (45,46,65,68–70) years.

Exceedingly few presurgical predictors of success have been identified, but younger age, shorter duration of diabetes (e.g., <3 years) (71), nonuse of insulin, maintenance of weight loss, and better glycemic control are consistently associated with higher rates of diabetes remission and/or lower risk of weight regain (45,69,71,72). Greater baseline visceral fat area may also help to predict better postoperative outcomes, especially among Asian American patients with type 2 diabetes, who typically have more visceral fat compared with Caucasians with diabetes of the same BMI (73).

Beyond improving glycemia, metabolic surgery has been shown to confer additional health benefits in randomized controlled trials, including substantial reductions in cardiovascular disease risk factors (17), reductions in incidence of microvascular disease (74), and enhancements in quality of life (66,71,75).

Although metabolic surgery has been shown to improve the metabolic profiles of patients with type 1 diabetes and morbid obesity, establishing the role of metabolic surgery in such patients will require larger and longer studies (76).

Metabolic surgery is more expensive than nonsurgical management strategies, but retrospective analyses and modeling studies suggest that metabolic surgery may be cost-effective or even cost-saving for patients with type 2 diabetes. However, results are largely dependent on assumptions about the long-term effectiveness and safety of the procedures (77,78).

Adverse Effects

The safety of metabolic surgery has improved significantly over the past two decades, with continued refinement of minimally invasive approaches (laparoscopic surgery), enhanced training and credentialing, and involvement of multidisciplinary teams. Mortality rates with metabolic operations are typically 0.1%–0.5%, similar to cholecystectomy or hysterectomy (79–83). Morbidity has also dramatically declined with laparoscopic approaches. Major complications rates (e.g., venous thromboembolism, need for operative reintervention) are 2%–6%, with other minor complications in up to 15% (79–88), which compare favorably with rates for other commonly performed elective operations (83). Empirical data suggest that efficiency of the operating surgeon is an important factor for determining mortality, complications, reoperations, and readmissions (89).

Longer-term concerns include dumping syndrome (nausea, colic, and diarrhea), vitamin and mineral deficiencies, anemia, osteoporosis, and, rarely (90), severe hypoglycemia. Long-term nutritional and micronutrient deficiencies and related complications occur with variable frequency depending on the type of procedure and require lifelong vitamin/nutritional supplementation (91,92). Postprandial hypoglycemia is most likely to occur with RYGB (92,93). The exact prevalence of symptomatic hypoglycemia is unknown. In one study, it affected 11% of 450 patients who had undergone RYGB or vertical sleeve gastrectomy (90). Patients who undergo metabolic surgery may be at increased risk for substance use, including drug and alcohol use and cigarette smoking. Additional potential risks of metabolic surgery that have been described include worsening or new-onset depression and/or anxiety, need for additional GI surgery, and suicidal ideation (94–97).

People with diabetes presenting for metabolic surgery also have increased rates of depression and other major psychiatric disorders (98). Candidates for metabolic surgery with histories of alcohol, tobacco, or substance abuse; significant depression; suicidal ideation; or other mental health conditions should therefore first be assessed by a mental health professional with expertise in obesity management prior to consideration for surgery (99). Surgery should be postponed in patients with alcohol or...
substance abuse disorders, significant depression, suicidal ideation, or other mental health conditions until these conditions have been fully addressed. Individuals with preoperative psycho-pathology should be assessed regularly following metabolic surgery to optimize mental health management and to ensure psychiatric symptoms do not interfere with weight loss and lifestyle changes.

References

72. Arterburn DE, Courcoulas AP. Bariatric surgery for obesity and metabolic conditions in adults. BMJ 2014;349:g3961
98. Young-Hyman D, Peyrot M. Psychosocial Care for People with Diabetes. Alexandria, VA, American Diabetes Association, 2012
9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2019

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

PHARMACOLOGIC THERAPY FOR TYPE 1 DIABETES

Recommendations

9.1 Most people with type 1 diabetes should be treated with multiple daily injections of prandial and basal insulin, or continuous subcutaneous insulin infusion. A

9.2 Most individuals with type 1 diabetes should use rapid-acting insulin analogs to reduce hypoglycemia risk. A

9.3 Consider educating individuals with type 1 diabetes on matching prandial insulin doses to carbohydrate intake, premeal blood glucose levels, and anticipated physical activity. E

9.4 Individuals with type 1 diabetes who have been successfully using continuous subcutaneous insulin infusion should have continued access to this therapy after they turn 65 years of age. E

Insulin Therapy

Because the hallmark of type 1 diabetes is absent or near-absent β-cell function, insulin treatment is essential for individuals with type 1 diabetes. Insufficient provision of insulin causes not only hyperglycemia but also systematic metabolic disturbances like hypertriglyceridemia and ketoadidosis, as well as tissue catabolism. Over the past three decades, evidence has accumulated supporting multiple daily injections of insulin or continuous subcutaneous administration through an insulin pump as providing the best combination of effectiveness and safety for people with type 1 diabetes.

Generally, insulin requirements can be estimated based on weight, with typical doses ranging from 0.4 to 1.0 units/kg/day. Higher amounts are required during puberty, pregnancy, and medical illness. The American Diabetes Association/JDRF...
Type 1 Diabetes Sourcebook notes 0.5 units/kg/day as a typical starting dose in patients with type 1 diabetes who are metabolically stable, with half administered as prandial insulin given to control blood glucose after meals and the other half as basal insulin to control glycemia in the periods between meal absorption (1); this guideline provides detailed information on intensification of therapy to meet individualized needs. In addition, the American Diabetes Association position statement “Type 1 Diabetes Management Through the Life Span” provides a thorough overview of type 1 diabetes treatment (2).

Physiologic insulin secretion varies with glycemia, meal size, and tissue demands for glucose. To approach this variability in people using insulin treatment, strategies have evolved to adjust prandial doses based on predicted needs. Thus, education of patients on how to adjust prandial insulin to account for carbohydrate intake, premeal glucose levels, and anticipated activity can be effective and should be considered. Newly available information suggests that individuals in whom carbohydrate counting is effective can incorporate estimates of meal fat and protein content into their prandial dosing for added benefit (3–5).

Most studies comparing multiple daily injections with continuous subcutaneous insulin infusion (CSII) have been relatively small and of short duration. However, a recent systematic review and meta-analysis concluded that pump therapy has modest advantages for lowering A1C (−0.30% [95% CI −0.58 to −0.02]) and for reducing severe hypoglycemia rates in children and adults (6). There is no consensus to guide choosing which form of insulin administration is best for a given patient, and research to guide this decision making is needed (7). The arrival of continuous glucose monitors to clinical practice means (7). The arrival of continuous glucose monitors to clinical practice means (7). The arrival of continuous glucose monitors to clinical practice means (7).

The Diabetes Control and Complications Trial (DCCT) demonstrated that intensive therapy with multiple daily injections or CSII reduced A1C and was associated with improved long-term outcomes (12–14). The study was carried out with short-acting and intermediate-acting human insulins. Despite better microvascular, macrovascular, and all-cause mortality outcomes, intensive therapy was associated with a higher rate of severe hypoglycemia (61 episodes per 100 patient-years of therapy). Since the DCCT, rapid-acting and long-acting insulin analogs have been developed. These analogs are associated with less hypoglycemia, less weight gain, and lower A1C than human insulins in people with type 1 diabetes (15–17). Longer-acting basal analogs (U-300 glargine or degludec) may convey a lower hypoglycemia risk compared with U-100 glargine in patients with type 1 diabetes (18,19). Rapid-acting inhaled insulin to be used before meals is now available and may reduce rates of hypoglycemia in patients with type 1 diabetes (20).

Postprandial glucose excursions may be better controlled by adjusting the timing of prandial insulin dose administration. The optimal time to administer prandial insulin varies, based on the type of insulin used (regular, rapid-acting analog, inhaled, etc.), measured blood glucose level, timing of meals, and carbohydrate consumption. Recommendations for prandial insulin dose administration should therefore be individualized.

Insulin Injection Technique
Ensuring that patients and/or caregivers understand correct insulin injection technique is important to optimize glucose control and insulin use safety. Thus, it is important that insulin be delivered into the proper tissue in the right way. Recommendations have been published elsewhere outlining best practices for insulin injection (21). Proper insulin injection technique includes injecting into appropriate body areas, injection site rotation, appropriate care of injection sites to avoid infection or other complications, and avoidance of intramuscular (IM) insulin delivery.

Exogenous-delivered insulin should be injected into subcutaneous tissue, not intramuscularly. Recommended sites for insulin injection include the abdomen, thigh, buttock, and upper arm (21). Because insulin absorption from IM sites differs according to the activity of the muscle, inadvertent IM injection can lead to unpredictable insulin absorption and variable effects on glucose, with IM injection being associated with frequent and unexplained hypoglycemia in several reports (21–23). Risk for IM insulin delivery is increased in younger and lean patients when injecting into the limbs rather than truncal sites (abdomen and buttocks) and when using longer needles (24). Recent evidence supports the use of short needles (e.g., 4-mm pen needles) as effective and well tolerated when compared to longer needles (25,26), including a study performed in obese adults (27). Injection site rotation is additionally necessary to avoid lipohypertrophy and lipatrophy (21). Lipohypertrophy can contribute to erratic insulin absorption, increased glycemic variability, and unexplained hypoglycemic episodes (28). Patients and/or caregivers should receive education about proper injection site rotation and to recognize and avoid areas of lipohypertrophy (21). As noted in Table 4.1, examination of insulin injection sites for the presence of lipohypertrophy, as well as assessment of injection device use and injection technique, are key components of a comprehensive diabetes medical evaluation and treatment plan. As referenced above, there are now numerous evidence-based insulin delivery recommendations that have been published. Proper insulin injection technique may lead to more effective use of this therapy and, as such, holds the potential for improved clinical outcomes.

Noninsulin Treatments for Type 1 Diabetes
Injectable and oral glucose-lowering drugs have been studied for their efficacy as adjuncts to insulin treatment of type 1 diabetes. Pramlintide is based on the naturally occurring β-cell peptide amylin and is approved for use in adults with type 1 diabetes. Results from randomized controlled studies show variable reductions of A1C (0–0.3%) and body weight
(1–2 kg) with addition of pramlintide to insulin (29,30). Similarly, results have been reported for several agents currently approved only for the treatment of type 2 diabetes. The addition of metformin to adults with type 1 diabetes caused small reductions in body weight and lipid levels but did not improve A1C (31,32). The addition of the glucagon-like peptide 1 (GLP-1) receptor agonists liraglutide and exenatide to insulin therapy caused small (0.2%) reductions in A1C compared with insulin alone in people with type 1 diabetes and also reduced body weight by \(\sim 3\) kg (33). Similarly, the addition of a sodium–glucose cotransporter 2 (SGLT2) inhibitor to insulin therapy has been associated with improvements in A1C and body weight when compared with insulin alone (34–36); however, SGLT2 inhibitor use is also associated with more adverse events including ketoacidosis. The dual SGLT1/2 inhibitor sotagliflozin is currently under consideration by the FDA and, if approved, would be the first adjunctive oral therapy in type 1 diabetes.

The risks and benefits of adjunctive agents beyond pramlintide in type 1 diabetes continue to be evaluated through the regulatory process; however, at this time, these adjunctive agents are not approved in the context of type 1 diabetes (37).

SURGICAL TREATMENT FOR TYPE 1 DIABETES

Pancreas and Islet Transplantation

Pancreas and islet transplantation normalizes glucose levels but requires lifelong immunosuppression to prevent graft rejection and recurrence of autoimmune islet destruction. Given the potential adverse effects of immunosuppressive therapy, pancreas transplantation should be reserved for patients with type 1 diabetes undergoing simultaneous renal transplantation, following renal transplantation, or for those with recurrent ketoacidosis or severe hyperglycemia despite intensive glycemic management (38).

PHARMACOLOGIC THERAPY FOR TYPE 2 DIABETES

Recommendations

9.5	Metformin is the preferred initial pharmacologic agent for the treatment of type 2 diabetes.	A
9.6	Once initiated, metformin should be continued as long as it is tolerated and not contraindicated; other agents, including insulin, should be added to metformin.	
9.7	Long-term use of metformin may be associated with biochemical vitamin B12 deficiency, and periodic measurement of vitamin B12 levels should be considered in metformin-treated patients, especially in those with anemia or peripheral neuropathy.	B
9.8	The early introduction of insulin should be considered if there is evidence of ongoing catabolism (weight loss), if symptoms of hyperglycemia are present, or when A1C levels (>10% [86 mmol/mol]) or blood glucose levels (>300 mg/dL [16.7 mmol/L]) are very high.	E
9.9	Consider initiating dual therapy in patients with newly diagnosed type 2 diabetes who have A1C >1.5% (12.5 mmol/mol) above their glycemic target.	E
9.10	A patient-centered approach should be used to guide the choice of pharmacologic agents. Considerations include comorbidities (atherosclerotic cardiovascular disease, heart failure, chronic kidney disease), hypoglycemia risk, impact on weight, cost, risk for side effects, and patient preferences.	E
9.11	Among patients with type 2 diabetes who have established atherosclerotic cardiovascular disease, sodium–glucose cotransporter 2 inhibitors, or glucagon-like peptide 1 receptor agonists with demonstrated cardiovascular disease benefit (Table 9.1) are recommended as part of the antihyperglycemic regimen.	A
9.12	Among patients with atherosclerotic cardiovascular disease at high risk of heart failure or in whom heart failure coexists, sodium–glucose cotransporter 2 inhibitors are preferred.	C
9.13	For patients with type 2 diabetes and chronic kidney disease, consider use of a sodium–glucose cotransporter 2 inhibitor or glucagon-like peptide 1 receptor agonist shown to reduce risk of chronic kidney disease progression, cardiovascular events, or both.	C
9.14	In most patients who need the greater glucose-lowering effect of an injectable medication, glucagon-like peptide 1 receptor agonists are preferred to insulin.	B
9.15	Intensification of treatment for patients with type 2 diabetes not meeting treatment goals should not be delayed.	B
9.16	The medication regimen should be reevaluated at regular intervals (every 3–6 months) and adjusted as needed to incorporate new patient factors (Table 9.1).	E

The American Diabetes Association/European Association for the Study of Diabetes consensus report “Management of Hyperglycemia in Type 2 Diabetes, 2018” (39) recommends a patient-centered approach to choosing appropriate pharmacologic treatment of blood glucose (Fig. 9.1). This includes consideration of efficacy and key patient factors: 1) important comorbidities such as atherosclerotic cardiovascular disease (ASCVD), chronic kidney disease (CKD), and heart failure (HF), 2) hypoglycemia risk, 3) effects on body weight, 4) side effects, 5) cost, and 6) patient preferences. Lifestyle modifications that improve health (see Section 5 “Lifestyle Management”) should be emphasized along with any pharmacologic therapy. See Sections 12 and 13 for recommendations specific for older adults and for children and adolescents with type 2 diabetes, respectively.

Initial Therapy

Metformin should be started at the time type 2 diabetes is diagnosed unless there are contraindications; for most patients this will be monotherapy in combination with lifestyle modifications. Metformin is effective and safe, is inexpensive, and may reduce risk of cardiovascular events and death (40). Metformin is available in an immediate-release form for twice-daily dosing or as an extended-release
<table>
<thead>
<tr>
<th>Drug-specific and patient factors to consider when selecting antihyperglycemic treatment in adults with type 2 diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 9.1</td>
</tr>
<tr>
<td>For agent-specific dosing recommendations, please refer to the manufacturers’ prescribing information.</td>
</tr>
<tr>
<td>† FDA approved for CVD benefit. CHF, congestive heart failure; CV, cardiovascular; DPP-4, dipeptidyl peptidase 4; DKA, diabetic ketoacidosis; DKD, diabetic kidney disease; GLP-1 RAs, glucagon-like peptide 1 receptor agonists; NASH, nonalcoholic steatohepatitis; SGLT2, sodium-glucose cotransporter 2.</td>
</tr>
<tr>
<td>Table 9.1—Drug-specific and patient factors to consider when selecting antihyperglycemic treatment in adults with type 2 diabetes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug-specific and patient factors</th>
<th>DPP-4 inhibitors</th>
<th>GLP-1 RAs</th>
<th>SGLT2 inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoglycemic:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficacy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV benefit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnancy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breastfeeding</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For agent-specific dosing recommendations, please refer to the manufacturers’ prescribing information.
Figure 9.1—Glucose-lowering medication in type 2 diabetes: overall approach. For appropriate context, see Fig. 4.1. ASCVD, atherosclerotic cardiovascular disease; CKD, chronic kidney disease; CV, cardiovascular; CVD, cardiovascular disease; CVOTs, cardiovascular outcomes trials; DPP-4i, dipeptidyl peptidase 4 inhibitor; eGFR, estimated glomerular filtration rate; GLP-1 RA, glucagon-like peptide 1 receptor agonist; HF, heart failure; SGLT2, sodium–glucose cotransporter 2 inhibitor; SU, sulfonylurea; TZD, thiazolidinedione. Adapted from Davies et al. (39).
Figure 9.2—Intensifying to injectable therapies. For appropriate context, see Fig. 4.1. DSMES, diabetes self-management education and support; FPG, fasting plasma glucose; FRC, fixed-ratio combination; GLP-1 RA, glucagon-like peptide 1 receptor agonist; max, maximum; PPG, postprandial glucose. Adapted from Davies et al. (39).

1. When selecting GLP-1 RA, consider: patient preference, HbA\(_1c\) lowering, weight-lowering effect, or frequency of injection. If CVD, consider GLP-1 RA with proven CVD benefit.
form that can be given once daily. Compared with sulfonylureas, metformin as first-line therapy has beneficial effects on A1C, weight, and cardiovascular mortality (41); there is little systematic data available for other oral agents as initial therapy of type 2 diabetes. The principal side effects of metformin are gastrointestinal intolerance due to bloating, abdominal discomfort, and diarrhea. The drug is cleared by renal filtration, and very high circulating levels (e.g., as a result of overdose or acute renal failure) have been associated with lactic acidosis. However, the occurrence of this complication is now known to be very rare, and metformin may be safely used in patients with reduced estimated glomerular filtration rates (eGFR); the FDA has revised the label for metformin to reflect its safety in patients with eGFR ≥ 30 mL/min/1.73 m² (42). A recent randomized trial confirmed previous observations that metformin use is associated with vitamin B12 deficiency and worsening of symptoms of neuropathy (43). This is compatible with a recent report from the Diabetes Prevention Program Outcomes Study (DPPOS) suggesting periodic testing of vitamin B12 (44).

In patients with contraindications or intolerance of metformin, initial therapy should be based on patient factors; consider a drug from another class depicted in Fig. 9.1. When A1C is ≥ 1.5% (12.5 mmol/mol) above glycemic target (see Section 6 “Glycemic Targets” for more information on selecting appropriate targets), many patients will require dual combination therapy to achieve their target A1C level (45). Insulin has the advantage of being effective where other agents are not and should be considered as part of any combination regimen when hyperglycemia is severe, especially if catabolic features (weight loss, hypertriglyceridemia, ketosis) are present. Consider initiating insulin therapy when blood glucose is ≥ 300 mg/dL (16.7 mmol/L) or A1C is ≥ 10% (86 mmol/}

Table 9.2—Median monthly cost of maximum approved daily dose of noninsulin glucose-lowering agents in the U.S.

<table>
<thead>
<tr>
<th>Class</th>
<th>Compound(s)</th>
<th>Dosage strength/product (if applicable)</th>
<th>Median AWP (min, max)†</th>
<th>Median NADAC (min, max)†</th>
<th>Maximum approved daily dose*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biguanides</td>
<td>Metformin</td>
<td>500 mg (IR)</td>
<td>$84 ($4, $93)</td>
<td>$93</td>
<td>2000 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>850 mg (IR)</td>
<td>$108 ($6, $109)</td>
<td>$109</td>
<td>2500 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000 mg (IR)</td>
<td>$87 ($4, $88)</td>
<td>$88</td>
<td>2000 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 mg (ER)</td>
<td>$89 ($82, $6,671)</td>
<td>$6,671</td>
<td>2000 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750 mg (ER)</td>
<td>$72 ($365, $92)</td>
<td>$92</td>
<td>2000 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000 mg (ER)</td>
<td>$1,028 ($1,028, $7,214)</td>
<td>$1,028</td>
<td>2000 mg</td>
</tr>
<tr>
<td>Sulfonylureas (2nd generation)</td>
<td>Glimepiride</td>
<td>4 mg</td>
<td>$71 ($71, $198)</td>
<td>$198</td>
<td>8 mg</td>
</tr>
<tr>
<td></td>
<td>Glipizide</td>
<td>10 mg (IR)</td>
<td>$75 ($67, $97)</td>
<td>$97</td>
<td>40 mg (IR)</td>
</tr>
<tr>
<td></td>
<td>Glyburide</td>
<td>10 mg (XL)</td>
<td>$48</td>
<td></td>
<td>20 mg (XL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 mg (micronized)</td>
<td>$50 ($48, $71)</td>
<td>$71</td>
<td>12 mg (micronized)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 mg</td>
<td>$93 ($63, $103)</td>
<td>$103</td>
<td>20 mg</td>
</tr>
<tr>
<td>Thiazolidinediones</td>
<td>Pioglitazone</td>
<td>45 mg</td>
<td>$348 ($283, $349)</td>
<td>$349</td>
<td>45 mg</td>
</tr>
<tr>
<td></td>
<td>Rosiglitazone</td>
<td>4 mg</td>
<td>$407</td>
<td></td>
<td>8 mg</td>
</tr>
<tr>
<td>α-Glucosidase inhibitors</td>
<td>Acarbose</td>
<td>100 mg</td>
<td>$106 ($104, $106)</td>
<td>$106</td>
<td>300 mg</td>
</tr>
<tr>
<td></td>
<td>Miglitol</td>
<td>100 mg</td>
<td>$241</td>
<td></td>
<td>300 mg</td>
</tr>
<tr>
<td>Meglitinides (glinides)</td>
<td>Nateglinide</td>
<td>120 mg</td>
<td>$155</td>
<td></td>
<td>360 mg</td>
</tr>
<tr>
<td></td>
<td>Repaglinide</td>
<td>2 mg</td>
<td>$878 ($162, $898)</td>
<td>$898</td>
<td>16 mg</td>
</tr>
<tr>
<td>DPP-4 inhibitors</td>
<td>Alogliptin</td>
<td>25 mg</td>
<td>$234</td>
<td></td>
<td>25 mg</td>
</tr>
<tr>
<td></td>
<td>Saxagliptin</td>
<td>5 mg</td>
<td>$490 ($462, $490)</td>
<td>$490</td>
<td>5 mg</td>
</tr>
<tr>
<td></td>
<td>Linagliptin</td>
<td>5 mg</td>
<td>$494</td>
<td></td>
<td>5 mg</td>
</tr>
<tr>
<td></td>
<td>Sitagliptin</td>
<td>100 mg</td>
<td>$516</td>
<td></td>
<td>100 mg</td>
</tr>
<tr>
<td>SGLT2 inhibitors</td>
<td>Ertugliflozin</td>
<td>15 mg</td>
<td>$322</td>
<td></td>
<td>15 mg</td>
</tr>
<tr>
<td></td>
<td>Dapagliflozin</td>
<td>15 mg</td>
<td>$557</td>
<td></td>
<td>15 mg</td>
</tr>
<tr>
<td></td>
<td>Canagliflozin</td>
<td>300 mg</td>
<td>$558</td>
<td></td>
<td>10 mg</td>
</tr>
<tr>
<td></td>
<td>Empagliflozin</td>
<td>25 mg</td>
<td>$558</td>
<td></td>
<td>300 mg</td>
</tr>
<tr>
<td>GLP-1 receptor agonists</td>
<td>Exenatide (extended release)</td>
<td>2 mg powder for suspension or pen</td>
<td>$792</td>
<td></td>
<td>2 mg**</td>
</tr>
<tr>
<td></td>
<td>Exenatide</td>
<td>10 μg pen</td>
<td>$850</td>
<td></td>
<td>20 μg</td>
</tr>
<tr>
<td></td>
<td>Dulaglutide</td>
<td>1.5/0.5 mL pen</td>
<td>$876</td>
<td></td>
<td>1.5 mg**</td>
</tr>
<tr>
<td></td>
<td>Semaglutide</td>
<td>1 mg pen</td>
<td>$875</td>
<td></td>
<td>1 mg**</td>
</tr>
<tr>
<td></td>
<td>Linagliptide</td>
<td>18 mg/3 mL pen</td>
<td>$1,044</td>
<td></td>
<td>1.8 mg</td>
</tr>
<tr>
<td>Bile acid sequestrants</td>
<td>Colesevelam</td>
<td>625 mg tabs 3.75 g suspension</td>
<td>$712 ($674, $712)</td>
<td>$712</td>
<td>3.75 g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.75 g suspension</td>
<td>$674</td>
<td></td>
<td>3.75 g</td>
</tr>
<tr>
<td>Dopamine-2 agonists</td>
<td>Bromocriptine</td>
<td>0.8 mg</td>
<td>$685</td>
<td></td>
<td>4.8 mg</td>
</tr>
<tr>
<td>Amylin mimetics</td>
<td>Pramlintide</td>
<td>120 μg pen</td>
<td>$2,047</td>
<td></td>
<td>120 μg/injection†††</td>
</tr>
</tbody>
</table>

*AWP, average wholesale price; DPP-4, dipeptidyl peptidase 4; ER and XL, extended release; GLP-1, glucagon-like peptide 1; IR, immediate release; NADAC, National Average Drug Acquisition Cost; SGLT2, sodium-glucose cotransporter 2. †Calculated for 30-day supply (AWP [44] or NADAC [45] unit price × number of doses required to provide maximum approved daily dose × 30 days); median AWP or NADAC listed alone when only one product and/or price. †Utilized to calculate median AWP and NADAC (min, max); generic prices used, if available commercially. **Administered once weekly. †††AWP and NADAC calculated based on 120 μg three times daily.
mol) or if the patient has symptoms of hyperglycemia (i.e., polyuria or polydipsia), even at diagnosis or early in the course of treatment (Fig. 9.2). As glucose toxicity resolves, simplifying the regimen and/or changing to oral agents is often possible.

Combination Therapy

Although there are numerous trials comparing dual therapy with metformin alone, few directly compare drugs as add-on therapy. A comparative effectiveness meta-analysis suggests that each new class of noninsulin agents added to initial therapy generally lowers A1C approximately 0.7–1.0% (46). If the A1C target is not achieved after approximately 3 months and the patient does not have ASCVD or CKD, consider a combination of metformin and any one of the preferred six treatment options: sulfonylurea, thiazolidinedione, dipeptidyl peptidase 4 (DPP-4) inhibitor, SGLT2 inhibitor, GLP-1 receptor agonist, or basal insulin; the choice of which agent to add is based on drug-specific effects and patient factors (Fig. 9.1 and Table 9.1). For patients in whom ASCVD, HF, or CKD predominates, the best choice for a second agent is a GLP-1 receptor agonist or SGLT2 inhibitor with demonstrated cardiovascular risk reduction, after consideration of drug-specific and patient factors (Table 9.1). For patients without established ASCVD or CKD, the choice of a second agent to add to metformin is not yet guided by empirical evidence. Rather, drug choice is based on avoidance of side effects, particularly hypoglycemia and weight gain, cost, and patient preferences (47). Similar considerations are applied in patients who require a third agent to achieve glycemic goals; there is also very little trial-based evidence to guide this choice. In all cases, treatment regimens need to be continuously reviewed for efficacy, side effects, and patient burden (Table 9.1). In some instances, patients will require medication reduction or discontinuation. Common reasons for this include ineffectiveness, intolerable side effects, expense, or a change in glycemic goals (e.g., in response to development of comorbidities or changes in treatment goals). See Section 12 “Older Adults” for a full discussion of treatment considerations in older adults.

Even though most patients prefer oral medications to drugs that need to be injected, the eventual need for the greater potency of injectable medications
is common, particularly in people with a longer duration of diabetes. The addition of basal insulin, either human NPH or one of the long-acting insulin analogs, to oral agent regimens is a well-established approach that is effective for many patients. In addition, recent evidence supports the utility of GLP-1 receptor agonists in patients not reaching glycemic targets with oral agent regimens. In trials comparing the addition of GLP-1 receptor agonists or insulin in patients needing further glucose lowering, the efficacy of the two treatments was similar (48–50). However, GLP-1 receptor agonists had a lower risk of hypoglycemia and beneficial effects on body weight compared with insulin, albeit with greater gastrointestinal side effects. Thus, trial results support a GLP-1 receptor agonist as the preferred option for patients requiring the potency of an injectable therapy for glucose control (Fig. 9.2). However, high costs and tolerability issues are important barriers to the use of GLP-1 receptor agonists.

Cost-effectiveness models of the newer agents based on clinical utility and glycemic effect have been reported (51). Table 9.2 provides cost information for currently approved noninsulin therapies. Of note, prices listed are average wholesale prices (AWP) (52) and National Average Drug Acquisition Costs (NADAC) (53) and do not account for discounts, rebates, or other price adjustments often involved in prescription sales that affect the actual cost incurred by the patient. While there are alternative means to estimate medication prices, AWP and NADAC were utilized to provide two separate measures to allow for a comparison of drug prices with the primary goal of highlighting the importance of cost considerations when prescribing antihyperglycemic treatments.

Cardiovascular Outcomes Trials

There are now multiple large randomized controlled trials reporting statistically significant reductions in cardiovascular events in patients with type 2 diabetes treated with an SGLT2 inhibitor (empagliflozin, canagliflozin) or GLP-1 receptor agonist (liraglutide, semaglutide). In people with diabetes with established ASCVD, empagliflozin decreased a composite three-point major cardiovascular event (MACE) outcome and mortality compared with placebo (54). Similarly, canagliflozin reduced the occurrence of MACE in a group of subjects with, or at high risk for, ASCVD (55). In both of these trials, SGLT2 inhibitors reduced hospitalization for HF (54,55); this was a secondary outcome of these studies and will require confirmation in more defined populations. In people with type 2 diabetes with ASCVD or increased risk for ASCVD, the addition of liraglutide decreased MACE and mortality (56), and the closely related GLP-1 receptor agonist semaglutide also had favorable effects on cardiovascular end points in high-risk subjects (57). In these cardiovascular outcomes trials, empagliflozin, canagliflozin, liraglutide, and semaglutide all had beneficial effects on composite indices of CKD (54–57). See “ANTIHYPERTHYMIC THERAPIES AND CARDIOVASCULAR OUTCOMES” in Section 10 “Cardiovascular Disease and Risk Management” and Table 10.4 for a detailed description of these cardiovascular outcomes trials, as well as a discussion of how HF may impact treatment choices. See Section 11 “Microvascular Complications and Foot Care” for a detailed discussion on how CKD may impact treatment choices. Additional large randomized trials of other agents in these classes are ongoing.

The subjects enrolled in the cardiovascular outcomes trials using empagliflozin, canagliflozin, liraglutide, and semaglutide had A1C ≥7%, and more than 70% were taking metformin at baseline. Moreover, the benefit of treatment was less evident in subjects with lower risk for ASCVD. Thus, extension of these results to practice is most appropriate for people with type 2 diabetes and established ASCVD who require additional glucose-lowering treatment beyond metformin and lifestyle management. For these patients, incorporating one of the SGLT2 inhibitors or GLP-1 receptor agonists that have been demonstrated to reduce cardiovascular events is recommended (Table 9.1).

Insulin Therapy

Many patients with type 2 diabetes eventually require and benefit from insulin therapy (Fig. 9.2). See the section above, **INSULIN INJECTION TECHNIQUE**, for important guidance on how to administer insulin safely and effectively. The progressive nature of type 2 diabetes should be regularly and objectively explained to patients, and providers should avoid using insulin as a threat or describing it as a sign of personal failure or punishment. Rather, the utility and importance of insulin to maintain glycemic control once progression of the disease overcomes the effect of oral agents should be emphasized. Educating and involving patients in insulin management is beneficial. Instruction of patients in self-titration of insulin doses based on self-monitoring of blood glucose improves glycemic control in patients with type 2 diabetes initiating insulin (58). Comprehensive education regarding self-monitoring of blood glucose, diet, and the avoidance and appropriate treatment of hypoglycemia are critically important in any patient using insulin.

Basal Insulin

Basal insulin alone is the most convenient initial insulin regimen and can be added to metformin and other oral agents. Starting doses can be estimated based on body weight (e.g., 10 units a day or 0.1–0.2 units/kg/day) and the degree of hyperglycemia, with individualized titration over days to weeks as needed. The principal action of basal insulin is to restrain hepatic glucose production, with a goal of maintaining euglycemia overnight and between meals (59,60). Control of fasting glucose can be achieved with human NPH insulin or with the use of a long-acting insulin analog. In clinical trials, long-acting basal analogs (U-100 glargine or detemir) have been demonstrated to reduce the risk of symptomatic and nocturnal hypoglycemia compared with NPH insulin (61–66), although these advantages are generally modest and may not persist (67). Longer-acting basal analogs (U-300 glargine or degludec) may convey a lower hypoglycemia risk compared with U-100 glargine when used in combination with oral agents (68–74). Despite evidence for reduced hypoglycemia with newer, longer-acting basal insulin analogs in clinical trial settings, in practice they may not affect the development of hypoglycemia compared with NPH insulin (75).

The cost of insulin has been rising steadily, and at a pace several fold that of other medical expenditures, over the past decade (76). This expense contributes significant burden to the patient as insulin has become a growing “out-of-pocket” cost for people with diabetes, and direct patient costs...
Concentrated Insulin Products

Several concentrated insulin preparations are currently available. U-500 regular insulin is, by definition, five times more concentrated than U-100 regular insulin. Regular U-500 has distinct pharmacokinetics with delayed onset and longer duration of action, characteristics more like an intermediate-acting insulin. U-300 glargine and U-200 degludec are three and two times as concentrated, respectively, as their U-100 formulations and allow higher doses of basal insulin administration per volume used. U-300 glargine has a longer duration of action than U-100 glargine but modestly lower efficacy per unit administered (80,81). The FDA has also approved a concentrated formulation of rapid-acting insulin lispro, U-200 (200 units/mL). These concentrated preparations may be more convenient and comfortable for patients to inject and may improve adherence in those with insulin resistance who require large doses of insulin. While U-500 regular insulin is available in both prefilled pens and vials (a dedicated syringe was FDA approved in July 2016), other concentrated insulins are available only in prefilled pens to minimize the risk of dosing errors.

Inhaled Insulin

Inhaled insulin is available for prandial use with a limited dosing range; studies in people with type 1 diabetes suggest rapid pharmacokinetics (20). A pilot study found evidence that compared with injectable rapid-acting insulin, supplemental doses of inhaled insulin taken based on postprandial glucose levels may improve blood glucose management without additional hypoglycemia or weight gain, although results from a larger study are needed for confirmation (82).

Inhaled insulin is contraindicated in patients with chronic lung disease, such as asthma and chronic obstructive pulmonary disease, and is not recommended in patients who smoke or who recently stopped smoking. All patients require spirometry (FEV1) testing to identify potential lung disease prior to and after starting inhaled insulin therapy.

Combination Injectable Therapy

If basal insulin has been titrated to an acceptable fasting blood glucose level (or if the dose is >0.5 units/kg/day) and A1C remains above target, consider advancing to combination injectable therapy (Fig. 9.2). This approach can use a GLP-1 receptor agonist added to basal insulin or multiple doses of insulin. The combination of basal insulin and GLP-1 receptor agonist has potent glycemic-lowering actions and less weight gain and hypoglycemia compared with intensified insulin regimens (83–85). Two different once-daily fixed-dual combination products containing basal insulin plus a GLP-1 receptor agonist are available: insulin glargine plus lixisenatide and insulin degludec plus lixadiglutide.

Intensification of insulin treatment can be done by adding doses of prandial to basal insulin. Starting with a single prandial dose with the largest meal of the day is simple and effective, and it can be advanced to a regimen with multiple prandial doses if necessary (86). Alternatively, in a patient on basal insulin in whom additional prandial coverage is desired, the regimen can be converted to two or three doses of a premixed insulin. Each approach has advantages and disadvantages. For example, basal/prandial regimens offer greater flexibility for patients who eat on irregular schedules. On the other hand, two doses of premixed insulin is a simple, convenient means of spreading insulin across the day. Moreover, human insulins, separately or as premixed NPH/Regular (70/30) formulations, are less costly alternatives to insulin analogs. Figure 9.2 outlines these options, as well as recommendations for further intensification, if needed, to achieve glycemic goals.

When initiating combination injectable therapy, metformin therapy should be maintained while sulfonylureas and DPP-4 inhibitors are typically discontinued. In patients with suboptimal blood glucose control, especially those requiring large insulin doses, adjunctive use of a thiazolidinedione or an SGLT2 inhibitor may help to improve control and reduce the amount of insulin needed, though potential side effects should be considered. Once a basal/bolus insulin regimen is initiated, dose titration is important, with adjustments made in both mealtimes and basal insulins based on the blood glucose levels and an understanding of the pharmacodynamic profile of each formulation (pattern control). As people with type 2 diabetes get older, it may become necessary to simplify complex insulin regimens because of a decline in self-management ability (see Section 12 “Older Adults”).

References
versus the general population. Diabetes Care 2016;39:1378–1383
19. Home PD, Bergenstal RM, Bolli GB, et al. New insulin glargine 300 units/mL versus glargine 100 units/mL in people with type 1 diabetes: a randomized, phase 3a, open-label clinical trial (EDITION 4). Diabetes Care 2015;38:2217–2225

55. Holli GB, Riddle MC, Bergenstal RM, et al.; EDITION 2 study investigators. New insulin glargine 300 U/ml compared with glargine 100 U/ml in insulin-naïve people with type 2 diabetes on oral glucose-lowering drugs: a randomized controlled trial (EDITION 3). Diabetes Obes Metab 2015;17:386–394.

66. Riddle MC, Yki-Järvinen H, Bolli GB, et al. One-year sustained glycaemic control and less hypoglycaemia with new insulin glargine 300 U/mI compared with 100 U/mL in people with type 2 diabetes using basal plus meal-time insulin: the EDITION 1 12-month randomized trial, including 6-month extension. Diabetes Obes Metab 2015;17:835–842.

86. Rodbard HW, Visco VE, Andersen H, Hiort LC, Shu DHW. Treatment intensification with step-wise addition of prandial insulin aspart boluses compared with full basal-bolus therapy (FullSTEP Study): a randomised, treat-to-target clinical trial. Lancet Diabetes Endocrinol 2014;2:30–37
10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2019

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

For prevention and management of diabetes complications in children and adolescents, please refer to Section 13 “Children and Adolescents.”

Atherosclerotic cardiovascular disease (ASCVD)—defined as coronary heart disease, cerebrovascular disease, or peripheral arterial disease presumed to be of atherosclerotic origin—is the leading cause of morbidity and mortality for individuals with diabetes and results in an estimated $37.3 billion in cardiovascular-related spending per year associated with diabetes (1). Common conditions coexisting with type 2 diabetes (e.g., hypertension and dyslipidemia) are clear risk factors for ASCVD, and diabetes itself confers independent risk. Numerous studies have shown the efficacy of controlling individual cardiovascular risk factors in preventing or slowing ASCVD in people with diabetes. Furthermore, large benefits are seen when multiple cardiovascular risk factors are addressed simultaneously. Under the current paradigm of aggressive risk factor modification in patients with diabetes, there is evidence that measures of 10-year coronary heart disease (CHD) risk among U.S. adults with diabetes have improved significantly over the past decade (2) and that ASCVD morbidity and mortality have decreased (3,4).

Heart failure is another major cause of morbidity and mortality from cardiovascular disease. Recent studies have found that rates of incident heart failure hospitalization (adjusted for age and sex) were twofold higher in patients with diabetes compared with those without (5,6). People with diabetes may have heart failure with preserved ejection fraction (HFrEF) or with reduced ejection fraction (HFrEF). Hypertension is often a precursor of heart failure of either type, and ASCVD can coexist with either type (7), whereas prior myocardial infarction (MI) is often a major factor in HFrEF. Rates of heart failure hospitalization have been improved in recent trials including patients with type 2 diabetes, most of whom also had ASCVD, with sodium–glucose cotransporter 2 (SGLT2) inhibitors (8–10).

For prevention and management of both ASCVD and heart failure, cardiovascular risk factors should be systematically assessed at least annually in all patients with diabetes. These risk factors include obesity/overweight, hypertension, dyslipidemia, smoking, a
family history of premature coronary disease, chronic kidney disease, and the presence of albuminuria. Modifiable abnormal risk factors should be treated as described in these guidelines.

The Risk Calculator
The American College of Cardiology/American Heart Association ASCVD risk calculator (Risk Estimator Plus) is generally a useful tool to estimate 10-year ASCVD risk (http://tools.acc.org/ASCVD-Risk-Estimator-Plus). These calculators have diabetes as a risk factor, since diabetes itself confers increased risk for ASCVD, although it should be acknowledged that these risk calculators do not account for the duration of diabetes or the presence of diabetes complications, such as albuminuria. Although some variability in calibration exists in various subgroups, including by sex, race, and diabetes, the overall risk prediction does not differ in those with or without diabetes (11–14), validating the use of risk calculators in people with diabetes. The 10-year risk of a first ASCVD event should be assessed to better stratify ASCVD risk and help guide therapy, as described below.

Recently, risk scores and other cardiovascular biomarkers have been developed for risk stratification of secondary prevention patients (i.e., those who are already high risk because they have ASCVD) but are not yet in widespread use (15,16). With newer, more expensive lipid-lowering therapies now available, use of these risk assessments may help target these new therapies to “higher risk” ASCVD patients in the future.

HYPERTENSION/BLOOD PRESSURE CONTROL
Hypertension, defined as a sustained blood pressure \(\geq 140/90 \text{ mmHg} \), is common among patients with either type 1 or type 2 diabetes. Hypertension is a major risk factor for both ASCVD and microvascular complications. Moreover, numerous studies have shown that antihypertensive therapy reduces ASCVD events, heart failure, and microvascular complications. Please refer to the American Diabetes Association (ADA) position statement “Diabetes and Hypertension” for a detailed review of the epidemiology, diagnosis, and treatment of hypertension (17). The recommendations presented here reflect ADA’s updated stance on blood pressure.

Screening and Diagnosis

Recommendations
10.1 Blood pressure should be measured at every routine clinical visit. Patients found to have elevated blood pressure (\(\geq 140/90 \text{ mmHg} \)) should have blood pressure confirmed using multiple readings, including measurements on a separate day, to diagnose hypertension. B

10.2 All hypertensive patients with diabetes should monitor their blood pressure at home. B

Blood pressure should be measured by a trained individual and should follow the guidelines established for the general population: measurement in the seated position, with feet on the floor and arm supported at heart level, after 5 min of rest. Cuff size should be appropriate for the upper-arm circumference. Elevated values should be confirmed on a separate day. Postural changes in blood pressure and pulse may be evidence of autonomic neuropathy and therefore require adjustment of blood pressure targets. Orthostatic blood pressure measurements should be checked on initial visit and as indicated.

Home blood pressure self-monitoring and 24-h ambulatory blood pressure monitoring may provide evidence of white coat hypertension, masked hypertension, or other discrepancies between office and “true” blood pressure (17). In addition to confirming or refuting a diagnosis of hypertension, home blood pressure assessment may be useful to monitor antihypertensive treatment. Studies of individuals without diabetes found that home measurements may better correlate with ASCVD risk than office measurements (18,19). Moreover, home blood pressure monitoring may improve patient medication adherence and thus help reduce cardiovascular risk (20).

Treatment Goals

Recommendations
10.3 For patients with diabetes and hypertension, blood pressure targets should be individualized through a shared decision-making process that addresses cardiovascular risk, potential adverse effects of antihypertensive medications, and patient preferences. C

10.4 For individuals with diabetes and hypertension at higher cardiovascular risk (existing atherosclerotic cardiovascular disease or 10-year atherosclerotic cardiovascular disease risk \(> 15\% \)), a blood pressure target of \(< 130/80 \text{ mmHg} \) may be appropriate, if it can be safely attained. C

10.5 For individuals with diabetes and hypertension at lower risk for cardiovascular disease (10-year atherosclerotic cardiovascular disease risk \(< 15\% \)), treat to a blood pressure target of \(< 140/90 \text{ mmHg} \). A

10.6 In pregnant patients with diabetes and preexisting hypertension who are treated with antihypertensive therapy, blood pressure targets of 120–160/80–105 mmHg are suggested in the interest of optimizing long-term maternal health and minimizing impaired fetal growth. E

Randomized clinical trials have demonstrated unequivocally that treatment of hypertension to blood pressure \(< 140/90 \text{ mmHg} \) reduces cardiovascular events as well as microvascular complications (21–27). Therefore, patients with type 1 or type 2 diabetes who have hypertension should, at a minimum, be treated to blood pressure targets of \(< 140/90 \text{ mmHg} \). The benefits and risks of intensifying antihypertensive therapy to target blood pressures lower than \(< 140/90 \text{ mmHg} \) (e.g., \(< 130/80 \) or \(< 120/80 \text{ mmHg} \)) have been evaluated in large randomized clinical trials and meta-analyses of clinical trials. Notably, there is an absence of high-quality data available to guide blood pressure targets in type 1 diabetes.

Randomized Controlled Trials of Intensive Versus Standard Blood Pressure Control
The Action to Control Cardiovascular Risk in Diabetes blood pressure (ACCORD BP) trial provides the strongest direct assessment of the benefits and risks of intensive blood pressure control among people with type 2 diabetes (28). In ACCORD BP, compared with standard blood pressure control (target systolic blood pressure \(< 140 \text{ mmHg} \)), intensive blood
pressure control (target systolic blood pressure ≤120 mmHg) did not reduce total major atherosclerotic cardiovascular events but did reduce the risk of stroke, at the expense of increased adverse events (∗Table 10.1). The ACCORD BP results suggest that blood pressure targets more intensive than ≤140/90 mmHg are not likely to improve cardiovascular outcomes among most people with type 2 diabetes but may be reasonable for patients who may derive the most benefit and have been educated about added treatment burden, side effects, and costs, as discussed below.

Additional studies, such as the Systolic Blood Pressure Intervention Trial (SPRINT) and the Hypertension Optimal Treatment (HOT) trial, also examined effects of intensive versus standard control (Table 10.1), though the relevance of their results to people with diabetes is less clear. The Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation–Blood Pressure (ADVANCE BP) trial did not explicitly test blood pressure targets (29); the achieved blood pressure in the intervention group was higher than that achieved in the ACCORD BP intensive arm and would be consistent with a target blood pressure of ≤140/90 mmHg. Notably, ACCORD BP and SPRINT measured blood pressure using automated office blood pressure measurement, which yields values that are generally

<table>
<thead>
<tr>
<th>Clinical trial</th>
<th>Population</th>
<th>Intensive</th>
<th>Standard</th>
<th>Outcomes</th>
</tr>
</thead>
</table>
| ACCORD BP (28) | 4,733 participants with T2D aged 40–79 years with prior evidence of CVD or multiple cardiovascular risk factors | Systolic blood pressure target: <120 mmHg Achieved (mean) systolic/diastolic: 119.3/64.4 mmHg | Systolic blood pressure target: 130–140 mmHg Achieved (mean) systolic/diastolic: 133.5/70.5 mmHg | • No benefit in primary end point: composite of nonfatal MI, nonfatal stroke, and CVD death
• Stroke risk reduced 41% with intensive control, not sustained through follow-up beyond the period of active treatment
• Adverse events more common in intensive group, particularly elevated serum creatinine and electrolyte abnormalities |
| ADVANCE BP (29) | 11,140 participants with T2D aged 55 years and older with prior evidence of CVD or multiple cardiovascular risk factors | Intervention: a single-pill, fixed-dose combination of perindopril and indapamide Achieved (mean) systolic/diastolic: 136/73 mmHg | Control: placebo Achieved (mean) systolic/diastolic: 141.6/75.2 mmHg | • Intervention reduced risk of primary composite end point of major macrovascular and microvascular events (9%), death from any cause (14%), and death from CVD (18%)
• 6-year observational follow-up found reduction in risk of death in intervention group attenuated but still significant (174) |
| HOT (173) | 18,790 participants, including 1,501 with diabetes | Diastolic blood pressure target: ≤80 mmHg | Diastolic blood pressure target: ≤90 mmHg | • In the overall trial, there was no cardiovascular benefit with more intensive targets
• In the subpopulation with diabetes, an intensive diastolic target was associated with a significantly reduced risk (51%) of CVD events |
| SPRINT (39) | 9,361 participants without diabetes | Systolic blood pressure target: <120 mmHg Achieved (mean): 121.4 mmHg | Systolic blood pressure target: <140 mmHg Achieved (mean): 136.2 mmHg | • Intensive systolic blood pressure target lowered risk of the primary composite outcome 25% (MI, ACS, stroke, HF, and death due to CVD)
• Intensive target reduced risk of death 27%
• Intensive therapy increased risks of electrolyte abnormalities and AKI |

ACS, acute coronary syndrome; AKI, acute kidney injury; CVD, cardiovascular disease; HF, heart failure; MI, myocardial infarction; T2D, type 2 diabetes.

Data from this table can also be found in the ADA position statement “Diabetes and Hypertension” (17).
lower than typical office blood pressure readings by approximately 5–10 mmHg (30), suggesting that implementing the ACCORD BP or SPRINT protocols in an outpatient clinic might require a systolic blood pressure target higher than <120 mmHg, such as <130 mmHg.

A number of post hoc analyses have attempted to explain the apparently divergent results of ACCORD BP and SPRINT. Some investigators have argued that the divergent results are not due to differences between people with and without diabetes but rather are due to differences in study design or to characteristics other than diabetes (31–33). Others have opined that the divergent results are most readily explained by the lack of benefit of intensive blood pressure control on cardiovascular mortality in ACCORD BP, which may be due to differential mechanisms underlying cardiovascular disease in type 2 diabetes, to chance, or both (34).

Meta-analyses of Trials
To clarify optimal blood pressure targets in patients with diabetes, meta-analyses have stratified clinical trials by mean baseline blood pressure or mean blood pressure attained in the intervention (or intensive treatment) arm. Based on these analyses, antihypertensive treatment appears to be beneficial when mean baseline blood pressure is ≥140/90 mmHg or mean attained intensive blood pressure is ≥130/80 mmHg (17,21,22,24–26). Among trials with lower baseline or attained blood pressure, antihypertensive treatment reduced the risk of stroke, retinopathy, and albuminuria, but effects on other ASCVD outcomes and heart failure were not evident. Taken together, these meta-analyses consistently show that treating patients with baseline blood pressure ≥140 mmHg to targets <140 mmHg is beneficial, while more intensive targets may offer additional (though probably less robust) benefits.

Individualization of Treatment Targets
Patients and clinicians should engage in a shared decision-making process to determine individual blood pressure targets (17). This approach acknowledges that the benefits and risks of intensive blood pressure targets are uncertain and may vary across patients and is consistent with a patient-focused approach to care that values patient priorities and provider judgment (35). Secondary analyses of ACCORD BP and SPRINT suggest that clinical factors can help determine individuals more likely to benefit and less likely to be harmed by intensive blood pressure control (36).

Absolute benefit from blood pressure reduction correlated with absolute baseline cardiovascular risk in SPRINT and in earlier clinical trials conducted at higher baseline blood pressure levels (11,37). Extrapolation of these studies suggests that patients with diabetes may also be more likely to benefit from intensive blood pressure control when they have high absolute cardiovascular risk. Therefore, it may be reasonable to target blood pressure <130/80 mmHg among patients with diabetes and either clinically diagnosed cardiovascular disease (particularly stroke, which was significantly reduced in ACCORD BP) or 10-year ASCVD risk ≥15%, if it can be attained safely. This approach is consistent with guidelines from the American College of Cardiology/American Heart Association, which advocate a blood pressure target <130/80 mmHg for all patients, with or without diabetes (38).

Potential adverse effects of antihypertensive therapy (e.g., hypotension, syncope, falls, acute kidney injury, and electrolyte abnormalities) should also be taken into account (28,39–41). Patients with older age, chronic kidney disease, and frailty have been shown to be at higher risk of adverse effects of intensive blood pressure control (41). In addition, patients with orthostatic hypotension, substantial comorbidity, functional limitations, or polypharmacy may be at high risk of adverse effects, and some patients may prefer higher blood pressure targets to enhance quality of life. Patients with low absolute cardiovascular risk (10-year ASCVD risk <15%) or with a history of adverse effects of intensive blood pressure control or at high risk of such adverse effects should have a higher blood pressure target. In such patients, a blood pressure target of <130/90 mmHg is recommended, if it can be safely attained.

Pregnancy and Antihypertensive Medications
Since there is a lack of randomized controlled trials of antihypertensive therapy in pregnant women with diabetes, recommendations for the management of hypertension in pregnant women with diabetes should be similar to those for all pregnant women. The American College of Obstetricians and Gynecologists (ACOG) has recommended that women with mild to moderate gestational hypertension (systolic blood pressure <160 mmHg or diastolic blood pressure <110 mmHg) do not need to be treated with antihypertensive medications as there is no benefit identified that clearly outweighs potential risks of therapy (42). A 2014 Cochrane systematic review of antihypertensive therapy for mild to moderate chronic hypertension that included 49 trials and over 4,700 women did not find any conclusive evidence for or against blood pressure treatment to reduce the risk of preeclampsia for the mother or effects on perinatal outcomes such as preterm birth, small-for-gestational-age infants, or fetal death (43). For pregnant women who require antihypertensive therapy, systolic blood pressure levels of 120–160 mmHg and diastolic blood pressure levels of 80–105 mmHg are suggested to optimize maternal health without risking fetal harm. Lower targets (systolic blood pressure 110–119 mmHg and diastolic blood pressure 65–79 mmHg) may contribute to improved long-term maternal health; however, they may be associated with impaired fetal growth. Pregnant women with hypertension and evidence of end-organ damage from cardiovascular and/or renal disease may be considered for lower blood pressure targets to avoid progression of these conditions during pregnancy.

During pregnancy, treatment with ACE inhibitors, angiotensin receptor blockers (ARBs), and spironolactone are contraindicated as they may cause fetal damage. Antihypertensive drugs known to be effective and safe in pregnancy include methyldopa, labetalol, and long-acting nifedipine, while hydralazine may be considered in the acute management of hypertension in pregnancy or severe preeclampsia (42). Diuretics are not recommended for blood pressure control in pregnancy but may be used during late-stage pregnancy if needed for volume control (42,44). ACOG also recommends that postpartum patients with gestational hypertension, preeclampsia, and superimposed preeclampsia have their blood pressures observed for 72 h in the hospital and for 7–10 days postpartum. Long-term follow-up is recommended for these women as they have increased lifetime cardiovascular risk (45). See Section
Lifestyle management is an important component of hypertension treatment because it lowers blood pressure, enhances the effectiveness of some antihypertensive medications, promotes other aspects of metabolic and vascular health, and generally leads to few adverse effects. Lifestyle therapy consists of reducing excess body weight through caloric restriction, restricting sodium intake (<2,300 mg/day), increasing consumption of fruits and vegetables (8–10 servings per day) and low-fat dairy products (2–3 servings per day), avoiding excessive alcohol consumption (no more than 2 servings per day in men and no more than 1 serving per day in women) (46), and increasing activity levels (47).

These lifestyle interventions are reasonable for individuals with diabetes and mildly elevated blood pressure (systolic >120 mmHg or diastolic >80 mmHg) and should be initiated along with pharmacologic therapy when hypertension is diagnosed (Fig. 10.1) (47). A lifestyle therapy plan should be developed in collaboration with the patient and discussed as part of diabetes management.

Pharmacologic Interventions

Recommendations

10.8 Patients with confirmed office-based blood pressure ≥140/90 mmHg should, in addition to lifestyle therapy, have prompt initiation and timely titration of pharmacologic therapy to achieve blood pressure goals. A

10.9 Patients with confirmed office-based blood pressure ≥160/100 mmHg should, in addition to lifestyle therapy, have prompt initiation and timely titration of two drugs or a single-pill combination of drugs demonstrated to reduce cardiovascular events in patients with diabetes. A

10.10 Treatment for hypertension should include drug classes demonstrated to reduce cardiovascular events in patients with diabetes (ACE inhibitors, angiotensin receptor blockers, thiazide-like diuretics, or dihydropyridine calcium channel blockers). A

10.11 Multiple-drug therapy is generally required to achieve blood pressure targets. However, combinations of ACE inhibitors and angiotensin receptor blockers and combinations of ACE inhibitors or angiotensin receptor blockers with direct renin inhibitors should not be used. A

10.12 An ACE inhibitor or angiotensin receptor blocker, at the maximum tolerated dose indicated for blood pressure treatment, is the recommended first-line treatment for hypertension in patients with diabetes and urinary albumin-to-creatinine ratio ≥300 mg/g creatinine A or 30–299 mg/g creatinine. B If one class is not tolerated, the other should be substituted. B

10.13 For patients treated with an ACE inhibitor, angiotensin receptor blocker, or diuretic, serum creatinine/estimated glomerular filtration rate and serum potassium levels should be monitored at least annually. B

Initial Number of Antihypertensive Medications. Initial treatment for people with diabetes depends on the severity of hypertension (Fig. 10.1). Those with blood pressure between 140/90 mmHg and 159/99 mmHg may begin with a single drug. For patients with blood pressure ≥160/100 mmHg, initial pharmacologic treatment with two antihypertensive medications is recommended in order to more effectively achieve adequate blood pressure control (48–50). Single-pill antihypertensive combinations may improve medication adherence in some patients (51).

Classes of Antihypertensive Medications. Initial treatment for hypertension should include any of the drug classes demonstrated to reduce cardiovascular events in patients with diabetes: ACE inhibitors (52,53), ARBs (52,53), thiazide-like diuretics (54), or dihydropyridine calcium channel blockers (55). For patients with albuminuria (urine albumin-to-creatinine ratio ≥30 mg/g), initial treatment should include an ACE inhibitor or ARB in order to reduce the risk of progressive kidney disease (17) (Fig. 10.1). In the absence of albuminuria, risk of progressive kidney disease is low, and ACE inhibitors and ARBs have not been found to afford superior cardioprotection when compared with thiazide-like diuretics or dihydropyridine calcium channel blockers (56). β-Blockers may be used for the treatment of prior MI, active angina, or heart failure but have not been shown to reduce mortality as blood pressure-lowering agents in the absence of these conditions (23,57).

Multiple-Drug Therapy. Multiple-drug therapy is often required to achieve blood pressure targets (Fig. 10.1), particularly in the setting of diabetic kidney disease. However, the use of both ACE inhibitors and ARBs in combination, or the combination of an ACE inhibitor or ARB and a direct renin inhibitor, is not recommended given the lack of added ASCVD benefit and increased rate of adverse events—namely, hyperkalemia, syncope, and acute kidney injury (AKI) (58–60). Titration of and/or addition of further blood pressure medications should be made in a timely fashion to overcome clinical inertia in achieving blood pressure targets.

Bedtime Dosing. Growing evidence suggests that there is an association between the absence of nocturnal blood pressure dipping and the incidence of ASCVD. A meta-analysis of randomized clinical trials found a small benefit of evening versus morning dosing of antihypertensive medications with regard to blood pressure control but had no data on clinical effects (61). In two subgroup analyses of a single subsequent randomized controlled trial, moving at least one antihypertensive medication to bedtime significantly reduced cardiovascular events, but results
Hyperkalemia and Acute Kidney Injury. Treatment with ACE inhibitors or ARBs can cause AKI and hyperkalemia, while diuretics can cause AKI and either hypokalemia or hyperkalemia (depending on mechanism of action) (63,64). Detection and management of these abnormalities is important because AKI and hyperkalemia each increase the risks of cardiovascular events and death (65). Therefore, serum creatinine and potassium should be monitored during treatment with an ACE inhibitor, ARB, or diuretic, particularly among patients with reduced glomerular filtration who...
are at increased risk of hyperkalemia and AKI (63,64,66).

Resistant Hypertension

Recommendation 10.14 Patients with hypertension who are not meeting blood pressure targets on three classes of antihypertensive medications (including a diuretic) should be considered for mineralocorticoid receptor antagonist therapy. B

Resistant hypertension is defined as blood pressure \(\geq 140/90 \) mmHg despite a therapeutic strategy that includes appropriate lifestyle management plus a diuretic and two other antihypertensive drugs belonging to different classes at adequate doses. Prior to diagnosing resistant hypertension, a number of other conditions should be excluded, including medication nonadherence, white coat hypertension, and secondary hypertension. In general, barriers to medication adherence (such as cost and side effects) should be identified and addressed (Fig. 10.1). Mineralocorticoid receptor antagonists are effective for management of resistant hypertension in patients with type 2 diabetes when added to existing treatment with an ACE inhibitor or ARB, thiazide-like diuretic, and dihydropyridine calcium channel blocker (67). Mineralocorticoid receptor antagonists also reduce albuminuria and have additional cardiovascular benefits (68–71). However, adding a mineralocorticoid receptor antagonist to a regimen including an ACE inhibitor or ARB may increase the risk for hyperkalemia, emphasizing the importance of regular monitoring for serum creatinine and potassium in these patients, and long-term outcome studies are needed to better evaluate the role of mineralocorticoid receptor antagonists in blood pressure management.

LIPID MANAGEMENT

Lifestyle Intervention

Recommendations

10.15 Lifestyle modification focusing on weight loss (if indicated); application of a Mediterranean diet or Dietary Approaches to Stop Hypertension (DASH) dietary pattern; reduction of saturated fat and trans fat; increase of dietary n-3 fatty acids, viscous fiber, and plant stanols/sterols intake; and increased physical activity should be recommended to improve the lipid profile and reduce the risk of developing atherosclerotic cardiovascular disease in patients with diabetes. A

10.16 Intensify lifestyle therapy and optimize glycemic control for patients with elevated triglyceride levels (\(\geq 150 \) mg/dL [1.7 mmol/L]) and/or low HDL cholesterol (\(< 40 \) mg/dL [1.0 mmol/L] for men, \(< 50 \) mg/dL [1.3 mmol/L] for women). C

Lifestyle intervention, including weight loss (72), increased physical activity, and medical nutrition therapy, allows some patients to reduce ASCVD risk factors. Nutrition intervention should be tailored according to each patient’s age, diabetes type, pharmacologic treatment, lipid levels, and medical conditions.

Recommendations should focus on application of a Mediterranean diet (73) or Dietary Approaches to Stop Hypertension (DASH) dietary pattern, reducing saturated and trans fat intake and increasing plant stanols/sterols, n-3 fatty acids, and viscous fiber (such as in oats, legumes, and citrus) intake (74). Glycemic control may also beneficially modify plasma lipid levels, particularly in patients with very high triglycerides and poor glycemic control. See Section 5 “Lifestyle Management” for additional nutrition information.

Ongoing Therapy and Monitoring With Lipid Panel

Recommendations

10.17 In adults not taking statins or other lipid-lowering therapy, it is reasonable to obtain a lipid profile at the time of diabetes diagnosis, at an initial medical evaluation, and every 5 years thereafter if under the age of 40 years, or more frequently if indicated. E

10.18 Obtain a lipid profile at initiation of statins or other lipid-lowering therapy, 4–12 weeks after initiation or a change in dose, and annually thereafter as it may help to monitor the response to therapy and inform medication adherence. E

In adults with diabetes, it is reasonable to obtain a lipid profile (total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides) at the time of diagnosis, at the initial medical evaluation, and at least every 5 years thereafter in patients under the age of 40 years. In younger patients with longer duration of disease (such as those with youth-onset type 1 diabetes), more frequent lipid profiles may be reasonable. A lipid panel should also be obtained immediately before initiating statin therapy. Once a patient is taking a statin, LDL cholesterol levels should be assessed 4–12 weeks after initiation of statin therapy, after any change in dose, and on an individual basis (e.g., to monitor for medication adherence and efficacy). If LDL cholesterol levels are not responding in spite of medication adherence, clinical judgment is recommended to determine the need for and timing of lipid panels. In individual patients, the highly variable LDL cholesterol–lowering response seen with statins is poorly understood (75). Clinicians should attempt to find a dose or alternative statin that is tolerable if side effects occur. There is evidence for benefit from even extremely low, less than daily statin doses (76).

Statin Treatment

Recommendations

10.19 For patients of all ages with diabetes and atherosclerotic cardiovascular disease or 10-year atherosclerotic cardiovascular disease risk \(> 20\%\), high-intensity statin therapy should be added to lifestyle therapy. A

10.20 For patients with diabetes aged \(< 40\) years with additional atherosclerotic cardiovascular disease risk factors, the patient and provider should consider using moderate-intensity statin in addition to lifestyle therapy. C

10.21 For patients with diabetes aged 40–75 years A and
>75 years B without atherosclerotic cardiovascular disease, use moderate-intensity statin in addition to lifestyle therapy.

10.22 In patients with diabetes who have multiple atherosclerotic cardiovascular disease risk factors, it is reasonable to consider high-intensity statin therapy.

10.23 For patients who do not tolerate the intended intensity, the maximally tolerated statin dose should be used.

10.24 For patients with diabetes and atherosclerotic cardiovascular disease, if LDL cholesterol is ≥70 mg/dL on maximally tolerated statin dose, consider adding additional LDL-lowering therapy (such as ezetimibe or PCSK9 inhibitor). A Ezetimibe may be preferred due to lower cost.

10.25 Statin therapy is contraindicated in pregnancy.

As in those without diabetes, absolute reductions in ASCVD outcomes (CHD death and nonfatal MI) are greatest in people with high baseline ASCVD risk (known ASCVD and/or very high LDL cholesterol levels), but the overall benefits of statin therapy in people with diabetes at moderate or even low risk for ASCVD are convincing (87,88). The relative benefit of lipid-lowering therapy has been uniform across most subgroups tested (78,86), including subgroups that varied with respect to age and other risk factors.

Primary Prevention (Patients Without ASCVD)

For primary prevention, moderate-dose statin therapy is recommended for those 40 years and older (80,87,88), though high-intensity therapy may be considered on an individual basis in the context of additional ASCVD risk factors. The evidence is strong for patients with diabetes aged 40–75 years, an age-group well represented in statin trials showing benefit. Since risk is enhanced in patients with diabetes, as noted above, patients who also have multiple other coronary risk factors have increased risk, equivalent to that of those with ASCVD. As such, recent guidelines recommend that in patients with diabetes who have multiple ASCVD risk factors, it is reasonable to prescribe high-intensity statin therapy (12,89). Furthermore, for patients with diabetes whose ASCVD risk is >20%, i.e., an ASCVD risk equivalent, the same high-intensity statin therapy is recommended as for those with documented ASCVD (12).

The evidence is lower for patients aged >75 years; relatively few older patients with diabetes have been enrolled in primary prevention trials. However, heterogeneity by age has not been seen in the relative benefit of lipid-lowering therapy in trials that included older participants (78,85,86), and because older age confers higher risk, the absolute benefits are actually greater (78,90). Moderate-intensity statin therapy is recommended in patients with diabetes that are 75 years or older. However, the risk-benefit profile should be routinely evaluated in this population, with downward titration of dose performed as needed. See Section 12 “Older Adults” for more details on clinical considerations for this population.

Age < 40 Years and/or Type 1 Diabetes. Very little clinical trial evidence exists for initiation of statin therapy based on risk-benefit.

Table 10.2—Recommendations for statin and combination treatment in adults with diabetes

<table>
<thead>
<tr>
<th>Age</th>
<th>ASCVD or 10-year ASCVD risk >20%</th>
<th>Recommended statin intensitya and combination treatment*</th>
</tr>
</thead>
<tbody>
<tr>
<td><40 years</td>
<td>No</td>
<td>None†</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In patients with ASCVD, if LDL cholesterol ≥70 mg/dL despite maximally tolerated statin dose, consider adding additional LDL-lowering therapy (such as ezetimibe or PCSK9 inhibitor)#</td>
</tr>
<tr>
<td>≥40 years</td>
<td>No</td>
<td>Moderate‡</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In patients with ASCVD, if LDL cholesterol ≥70 mg/dL despite maximally tolerated statin dose, consider adding additional LDL-lowering therapy (such as ezetimibe or PCSK9 inhibitor)</td>
</tr>
</tbody>
</table>

ASCVD, atherosclerotic cardiovascular disease; PCSK9, proprotein convertase subtilisin/kinin type 9.

*In addition to lifestyle therapy. †For patients who do not tolerate the intended intensity of statin, the maximally tolerated statin dose should be used. ‡Moderate-intensity statin may be considered based on risk-benefit profile and presence of ASCVD risk factors. ASCVD risk factors include LDL cholesterol ≥100 mg/dL (2.6 mmol/L), high blood pressure, smoking, chronic kidney disease, albuminuria, and family history of premature ASCVD. ¶High-intensity statin may be considered based on risk-benefit profile and presence of ASCVD risk factors. #Adults aged <40 years with prevalent ASCVD were not well represented in clinical trials of non-statin–based LDL reduction. Before initiating combination lipid-lowering therapy, consider the potential for further ASCVD risk reduction, drug-specific adverse effects, and patient preferences.

Initiating Statin Therapy Based on Risk

Patients with type 2 diabetes have an increased prevalence of lipid abnormalities, contributing to their high risk of ASCVD. Multiple clinical trials have demonstrated the beneficial effects of statin therapy on ASCVD outcomes in subjects with and without CHD (77,78). Subgroup analyses of patients with diabetes in larger trials (79–83) and trials in patients with diabetes (84,85) showed significant primary and secondary prevention of ASCVD events and CHD death in patients with diabetes. Meta-analyses, including data from over 18,000 patients with diabetes from 14 randomized trials of statin therapy (mean follow-up 4.3 years), demonstrate a 9% proportional reduction in all-cause mortality and 13% reduction in vascular mortality for each mmol/L (39 mg/dL) reduction in LDL cholesterol (86).

Accordingly, statins are the drugs of choice for LDL cholesterol lowering and cardioprotection. Table 10.2 shows recommended lipid-lowering strategies, and Table 10.3 shows the two statin dosing intensities that are recommended for use in clinical practice: high-intensity statin therapy will achieve approximately a 50% reduction in LDL cholesterol, and moderate-intensity statin regimens achieve 30–50% reductions in LDL cholesterol. Low-dose statin therapy is generally not recommended in patients with diabetes but is sometimes the only dose of statin that a patient can tolerate. For patients who do not tolerate the intended intensity of statin, the maximally tolerated statin dose should be used.

Table 10.2—Recommendations for statin and combination treatment in adults with diabetes

<table>
<thead>
<tr>
<th>Age</th>
<th>ASCVD or 10-year ASCVD risk >20%</th>
<th>Recommended statin intensitya and combination treatment*</th>
</tr>
</thead>
<tbody>
<tr>
<td><40 years</td>
<td>No</td>
<td>None†</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In patients with ASCVD, if LDL cholesterol ≥70 mg/dL despite maximally tolerated statin dose, consider adding additional LDL-lowering therapy (such as ezetimibe or PCSK9 inhibitor)#</td>
</tr>
<tr>
<td>≥40 years</td>
<td>No</td>
<td>Moderate‡</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In patients with ASCVD, if LDL cholesterol ≥70 mg/dL despite maximally tolerated statin dose, consider adding additional LDL-lowering therapy (such as ezetimibe or PCSK9 inhibitor)</td>
</tr>
</tbody>
</table>

ASCVD, atherosclerotic cardiovascular disease; PCSK9, proprotein convertase subtilisin/kinin type 9.

*In addition to lifestyle therapy. †For patients who do not tolerate the intended intensity of statin, the maximally tolerated statin dose should be used. ‡Moderate-intensity statin may be considered based on risk-benefit profile and presence of ASCVD risk factors. ASCVD risk factors include LDL cholesterol ≥100 mg/dL (2.6 mmol/L), high blood pressure, smoking, chronic kidney disease, albuminuria, and family history of premature ASCVD. ¶High-intensity statin may be considered based on risk-benefit profile and presence of ASCVD risk factors. #Adults aged <40 years with prevalent ASCVD were not well represented in clinical trials of non-statin–based LDL reduction. Before initiating combination lipid-lowering therapy, consider the potential for further ASCVD risk reduction, drug-specific adverse effects, and patient preferences.
Table 10.3—High-intensity and moderate-intensity statin therapy

<table>
<thead>
<tr>
<th>High-intensity statin therapy (lowers LDL cholesterol by ≥50%)</th>
<th>Moderate-intensity statin therapy (lowers LDL cholesterol by 30–50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin 40–80 mg</td>
<td>Atorvastatin 10–20 mg</td>
</tr>
<tr>
<td>Rosuvastatin 20–40 mg</td>
<td>Rosuvastatin 5–10 mg</td>
</tr>
<tr>
<td>Simvastatin 20–40 mg</td>
<td>Simvastatin 10–20 mg</td>
</tr>
<tr>
<td>Pravastatin 40–80 mg</td>
<td>Pravastatin 10–20 mg</td>
</tr>
<tr>
<td>Lovastatin 40 mg</td>
<td>Lovastatin 10–20 mg</td>
</tr>
<tr>
<td>Fluvastatin XL 80 mg</td>
<td>Fluvastatin XL 20 mg</td>
</tr>
<tr>
<td>Pitavastatin 2–4 mg</td>
<td>Pitavastatin 1–2 mg</td>
</tr>
</tbody>
</table>

*Once-daily dosing. XL, extended release.

patients with type 2 diabetes under the age of 40 years or for patients with type 1 diabetes of any age. For pediatric recommendations, see Section 13 “Children and Adolescents.” In the Heart Protection Study (lower age limit 40 years), the subgroup of ~600 patients with type 1 diabetes had a proportionately similar, although not statistically significant, reduction in risk as patients with type 2 diabetes (80). Even though the data are not definitive, similar statin treatment approaches should be considered for patients with type 1 or type 2 diabetes, particularly in the presence of other cardiovascular risk factors. Patients below the age of 40 have lower risk of developing a cardiovascular event over a 10-year horizon; however, their lifetime risk of developing cardiovascular disease and suffering an MI, stroke, or cardiovascular death is high. For patients under the age of 40 years and/or who have type 1 diabetes with other ASCVD risk factors, we recommend that the patient and health care provider discuss the relative benefits and risks and consider the use of moderate-intensity statin therapy. Please refer to “Type 1 Diabetes Mellitus and Cardiovascular Disease: A Scientific Statement From the American Heart Association and American Diabetes Association” (91) for additional discussion.

Secondary Prevention (Patients With ASCVD)

Because risk is high in patients with ASCVD, intensive therapy is indicated and has been shown to be of benefit in multiple large randomized cardiovascular outcomes trials (86,90,92,93). High-intensity statin therapy is recommended for all patients with diabetes and ASCVD. This recommendation is based on the Cholesterol Treatment Triallists’ Collaboration involving 26 statin trials, of which 5 compared high-intensity versus moderate-intensity statins. Together, they found reductions in nonfatal cardiovascular events with more intensive therapy, in patients with and without diabetes (78,82,92).

Over the past few years, there have been multiple large randomized trials investigating the benefits of adding nonstatin agents to statin therapy, including those that evaluated further lowering of LDL cholesterol with ezetimibe (90,94) and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors (93). Each trial found a significant benefit in the reduction of ASCVD events that was directly related to the degree of further LDL cholesterol lowering. These large trials included a significant number of participants with diabetes. For patients with ASCVD who are on high-intensity (and maximally tolerated) statin therapy and have an LDL cholesterol ≥70 mg/dL, the addition of nonstatin LDL-lowering therapy is recommended following a clinician-patient discussion about the net benefit, safety, and cost (Table 10.2).

Combination Therapy for LDL Cholesterol Lowering

Statins and Ezetimibe

The IMPROved Reduction of Outcomes: Vytorin Efficacy International Trial (IMPROVE-IT) was a randomized controlled trial in 18,144 patients comparing the addition of ezetimibe to simvastatin therapy versus simvastatin alone. Individuals were ≥50 years of age, had experienced a recent acute coronary syndrome (ACS), and were treated for an average of 6 years. Overall, the addition of ezetimibe led to a 6.4% relative benefit and a 2% absolute reduction in major adverse cardiovascular events, with the degree of benefit being directly proportional to the change in LDL cholesterol, which was 70 mg/dL in the statin group on average and 54 mg/dL in the combination group (90). In those with diabetes (27% of participants), the combination of moderate-intensity simvastatin (40 mg) and ezetimibe (10 mg) showed a significant reduction of major adverse cardiovascular events with an absolute risk reduction of 5% (40% vs. 45% cumulative incidence at 7 years) and relative risk reduction of 14% (hazard ratio [HR] 0.86 [95% CI 0.78–0.94]) over moderate-intensity simvastatin (40 mg) alone (94).

Statins and PCSK9 Inhibitors

Placebo-controlled trials evaluating the addition of the PCSK9 inhibitors evolocumab and alirocumab to maximally tolerated doses of statin therapy in participants who were at high risk for ASCVD demonstrated an average reduction in LDL cholesterol ranging from 36% to 59%. These agents have been approved as adjunctive therapy for patients with ASCVD or familial hypercholesterolemia who are receiving maximally tolerated statin therapy but require additional lowering of LDL cholesterol (95,96).

The effects of PCSK9 inhibition on ASCVD outcomes was investigated in the Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk (FOURIER) trial, which enrolled 27,564 patients with prior ASCVD and an additional high-risk feature who were receiving their maximally tolerated statin therapy (two-thirds were on high-intensity statin) but who still had an LDL cholesterol ≥70 mg/dL or a non-HDL cholesterol ≥100 mg/dL (93). Patients were randomized to receive subcutaneous injections of evolocumab (either 140 mg every 2 weeks or 420 mg every month based on patient preference) versus placebo. Evolocumab reduced LDL cholesterol by 59% from a median of 92 to 30 mg/dL in the treatment arm.

During the median follow-up of 2.2 years, the composite outcome of cardiovascular death, MI, stroke, hospitalization for angina, or revascularization occurred in 11.3% vs. 9.8% of the placebo and evolocumab groups, respectively, representing a 15% relative risk reduction ($P < 0.001$). The combined end point of cardiovascular death, MI, or stroke was reduced by 20%, from 7.4% to 5.9% ($P < 0.001$). Importantly, similar benefits were seen in prespecified subgroup of patients with diabetes, comprising 11,031 patients (40% of the trial) (97).
Treatment of Other Lipoprotein Fractions or Targets

Recommendations

10.26 For patients with fasting triglyceride levels ≤ 500 mg/dL (5.7 mmol/L), evaluate for secondary causes of hypertriglyceridemia and consider medical therapy to reduce the risk of pancreatitis. **C**

10.27 In adults with moderate hypertriglyceridemia (fasting or nonfasting triglycerides 175–499 mg/dL), clinicians should address and treat lifestyle factors (obesity and metabolic syndrome), secondary factors (diabetes, chronic liver or kidney disease and/or nephrotic syndrome, hypothyroidism), and medications that raise triglycerides. **C**

Hypertriglyceridemia should be addressed with dietary and lifestyle changes including weight loss and abstinence from alcohol (98). Severe hypertriglyceridemia (fasting triglycerides ≥ 500 mg/dL and especially >1000 mg/dL) may warrant pharmacologic therapy (fibrates, acid derivatives and/or fish oil) to reduce the risk of acute pancreatitis. In addition, if 10-year ASCVD risk is $\geq 7.5\%$, it is reasonable to initiate moderate-intensity statin therapy or increase statin intensity from moderate to high. In patients with moderate hypertriglyceridemia, lifestyle interventions, treatment of secondary factors, and avoidance of medications that might raise triglycerides are recommended.

Low levels of HDL cholesterol, often associated with elevated triglyceride levels, are the most prevalent pattern of dyslipidemia in individuals with type 2 diabetes. However, the evidence for the use of drugs that target these lipid fractions is substantially less robust than that for statin therapy (99). In a large trial in patients with diabetes, fenofibrate failed to reduce overall cardiovascular outcomes (100).

Other Combination Therapy

Recommendations

10.28 Combination therapy (statin/fibrate) has not been shown to improve atherosclerotic cardio-

vascular disease outcomes and is generally not recommended. **A**

10.29 Combination therapy (statin/niacin) has not been shown to provide additional cardiovascular benefit above statin therapy alone, may increase the risk of stroke with additional side effects, and is generally not recommended. **A**

Statin and Fibrate

Combination therapy (statin and fibrate) is associated with an increased risk for abnormal transaminase levels, myositis, and rhabdomyolysis. The risk of rhabdomyolysis is more common with higher doses of statins and renal insufficiency and appears to be higher when statins are combined with gemfibrozil (compared with fenofibrate) (101).

In the ACCORD study, in patients with type 2 diabetes who were at high risk for ASCVD, the combination of fenofibrate and simvastatin did not reduce the rate of fatal cardiovascular events, nonfatal MI, or nonfatal stroke as compared with simvastatin alone. Prespecified subgroup analyses suggested heterogeneity in treatment effects with possible benefit for men with both a triglyceride level ≥ 204 mg/dL (2.3 mmol/L) and an HDL cholesterol level ≤ 34 mg/dL (0.9 mmol/L) (102). A prospective trial of a newer fibrate in this specific population of patients is ongoing (103).

Statin and Niacin

The Atherosclerosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides: Impact on Global Health Outcomes (AIM-HIGH) trial randomized over 3,000 patients (about one-third with diabetes) with established ASCVD, low LDL cholesterol levels (<180 mg/dL [4.7 mmol/L]), low HDL cholesterol levels (men <40 mg/dL [1.0 mmol/L] and women <50 mg/dL [1.3 mmol/L]), and triglyceride levels of 150–400 mg/dL (1.7–4.5 mmol/L) to statin therapy plus extended-release niacin or placebo. The trial was halted early due to lack of efficacy on the primary ASCVD outcome (first event of the composite of death from CHD, nonfatal MI, ischemic stroke, hospitalization for an ACS, or symptom-driven coronary or cerebral revascularization) and a possible increase in ischemic stroke in those on combination therapy (104).

The much larger Heart Protection Study 2–Treatment of HDL to Reduce the Incidence of Vascular Events (HPS2-THRIVE) trial also failed to show a benefit of adding niacin to background statin therapy (105). A total of 25,673 patients with prior vascular disease were randomized to receive 2 g of extended-release niacin and 40 mg of laropiprant (an antagonist of the prostaglandin D2 receptor DP$_2$ that has been shown to improve adherence to niacin therapy) versus a matching placebo daily and followed for a median follow-up period of 3.9 years. There was no significant difference in the rate of coronary death, MI, stroke, or coronary revascularization with the addition of niacin–laropiprant versus placebo (13.2% vs. 13.7%; rate ratio 0.96; $P = 0.29$). Niacin–laropiprant was associated with an increased incidence of new-onset diabetes (absolute excess, 1.3 percentage points; $P < 0.001$) and disturbances in diabetes control among those with diabetes. In addition, there was an increase in serious adverse events associated with the gastrointestinal system, musculoskeletal system, skin, and, unexpectedly, infection and bleeding.

Therefore, combination therapy with a statin and niacin is not recommended given the lack of efficacy on major ASCVD outcomes and increased side effects.

Diabetes With Statin Use

Several studies have reported a modestly increased risk of incident diabetes with statin use (106,107), which may be limited to those with diabetes risk factors. An analysis of one of the initial studies suggested that although statin use was associated with diabetes risk, the cardiovascular event rate reduction with statins far outweighed the risk of incident diabetes even for patients at highest risk for diabetes (108). The absolute risk increase was small (over 5 years of follow-up, 1.2% of participants on placebo developed diabetes and 1.5% on rosvastatin developed diabetes) (108). A meta-analysis of 13 randomized statin trials with 91,140 participants showed an odds ratio of 1.09 for a new diagnosis of diabetes, so that (on average) treatment of 255 patients with statins for 4 years resulted in one additional case of diabetes while simultaneously preventing 5.4
vascular events among those 255 patients (107).

Lipid-Lowering Agents and Cognitive Function

Although this issue has been raised, several lines of evidence point against this association, as detailed in a 2018 European Atherosclerosis Society Consensus Panel statement (109). First, there are three large randomized trials of statin therapy, including among patients treated to very low LDL cholesterol levels. In addition, the most recent systematic review of the U.S. Food and Drug Administration’s (FDA’s) postmarketing surveillance databases, randomized controlled trials, and cohort, case-control, and cross-sectional studies evaluating cognition in patients receiving statins found that published data do not reveal an adverse effect of statins on cognition (115). Therefore, a concern that statins or other lipid-lowering agents might cause cognitive dysfunction or dementia is not currently supported by evidence and should not deter their use in individuals with diabetes at high risk for ASCVD (115).

Recommendations

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.30</td>
<td>Use aspirin therapy (75–162 mg/day) as a secondary prevention strategy in those with diabetes and a history of atherosclerotic cardiovascular disease. A</td>
</tr>
<tr>
<td>10.31</td>
<td>For patients with atherosclerotic cardiovascular disease and documented aspirin allergy, clopidogrel (75 mg/day) should be used. B</td>
</tr>
<tr>
<td>10.32</td>
<td>Dual antiplatelet therapy (with low-dose aspirin and a P2Y12 inhibitor) is reasonable for a year after an acute coronary syndrome A and may have benefits beyond this period. B</td>
</tr>
<tr>
<td>10.33</td>
<td>Aspirin therapy (75–162 mg/day) may be considered as a primary prevention strategy in those with diabetes who are at increased cardiovascular risk, after a discussion with the patient on the benefits versus increased risk of bleeding. C</td>
</tr>
</tbody>
</table>

Risk Reduction

Aspirin has been shown to be effective in reducing cardiovascular morbidity and mortality in high-risk patients with previous MI or stroke (secondary prevention) and is strongly recommended. In primary prevention, however, among patients with no previous cardiovascular events, its net benefit is more controversial (116,117).

Previous randomized controlled trials of aspirin specifically in patients with diabetes failed to consistently show a significant reduction in overall ASCVD end points, raising questions about the efficacy of aspirin for primary prevention in people with diabetes, although some sex differences were suggested (118–120).

The Antithrombotic Trialists’ Collaboration published an individual patient-level meta-analysis (116) of the six large trials of aspirin for primary prevention in the general population. These trials collectively enrolled over 95,000 participants, including almost 4,000 with diabetes. Overall, they found that aspirin reduced the risk of serious vascular events by 12% (RR 0.88 [95% CI 0.82–0.94]). The largest reduction was for nonfatal MI, with little effect on CHD death (RR 0.95 [95% CI 0.78–1.15]) or total stroke.

Most recently, the ASCEND (A Study of Cardiovascular Events in Diabetes) trial randomized 15,480 patients with diabetes but no evident cardiovascular disease to aspirin 100 mg daily or placebo (121). The primary efficacy end point was vascular death, MI, or stroke or transient ischemic attack. The primary safety outcome was major bleeding (i.e., intracranial hemorrhage, sight-threatening bleeding in the eye, gastrointestinal bleeding, or other serious bleeding). During a mean follow-up of 7.4 years, there was a significant 12% reduction in the primary efficacy end point (8.5% vs. 9.6%; \(P = 0.01 \)). In contrast, major bleeding was significantly increased from 3.2% to 4.1% in the aspirin group (rate ratio 1.29; \(P = 0.003 \)), with most of the excess being gastrointestinal bleeding and other extracranial bleeding. There were no significant differences by sex, weight, or duration of diabetes or other baseline factors including ASCVD risk score.

Two other large randomized trials of aspirin for primary prevention, in patients without diabetes (ARRIVE [Aspirin to Reduce Risk of Initial Vascular Events]) (122) and in the elderly (ASPREE [Aspirin in Reducing Events in the Elderly]) (123), including 11% with diabetes, found no benefit of aspirin on the primary efficacy end point and an increased risk of bleeding. In ARRIVE, with 12,546 patients over a period of 60 months follow-up, the primary end point occurred in 4.29% vs. 4.48% of patients in the aspirin versus placebo groups (HR 0.96; 95% CI 0.81–1.13; \(P = 0.60 \)). Gastrointestinal bleeding events (characterized as mild) occurred in 0.97% of patients in the aspirin group vs. 0.46% in the placebo group (HR 2.11; 95% CI 1.36–3.28; \(P = 0.0007 \)). In ASPREE, including 19,114 persons, for the rate of cardiovascular disease (fatal CHD, MI, stroke, or hospitalization for heart failure) after a median of 4.7 years of follow-up, the rates per 1,000 person-years were 10.7 vs. 11.3 events in aspirin vs. placebo groups (HR 0.95; 95% CI 0.83–1.08). The rate of major hemorrhage per 1,000 person-years was 8.6 events vs. 6.2 events, respectively (HR 1.38; 95% CI 1.18–1.62; \(P < 0.001 \)).

Thus, aspirin appears to have a modest effect on ischemic vascular events, with the absolute decrease in events depending on the underlying ASCVD risk. The main adverse effect is an increased risk of gastrointestinal bleeding. The excess risk may be as high as 5 per 1,000 person-year in real-world settings. However, for adults with ASCVD risk >1% per year, the number of ASCVD events prevented will be similar to the number of episodes of bleeding induced, although these complications do not have equal effects on long-term health (124).

Treatment Considerations

In 2010, a position statement of the ADA, the American Heart Association, and the American College of Cardiology Foundation recommended that low-dose (75–162 mg/day) aspirin for primary prevention is reasonable for adults with diabetes and no previous history of vascular disease who are at increased ASCVD risk.
and who are not at increased risk for bleeding (125). These recommendations for using aspirin as primary prevention include both men and women aged ≥50 years with diabetes and at least one additional major risk factor (family history of premature ASCVD, hypertension, dyslipidemia, smoking, or chronic kidney disease/albuninuria) who are not at increased risk of bleeding (e.g., older age, anemia, renal disease) (126–129). Non-invasive imaging techniques such as coronary computed tomography angiography may potentially help further tailor aspirin therapy, particularly in those at low risk (130), but are not generally recommended. For patients over the age of 70 years (with or without diabetes), the balance appears to have greater risk than benefit (121,123). Thus, for primary prevention, the use of aspirin needs to be carefully considered and may generally not be recommended. Aspirin may be considered in the context of high cardiovascular risk with low bleeding risk, but generally not in older adults. For patients with documented ASCVD, use of aspirin for secondary prevention has far greater benefit than risk; for this indication, aspirin is still recommended (116).

Aspirin Use in People <50 Years of Age

Aspirin is not recommended for those at low risk of ASCVD (such as men and women aged <50 years with diabetes with no other major ASCVD risk factors) as the low benefit is likely to be outweighed by the risks of bleeding. Clinical judgment should be used for those at intermediate risk (younger patients with one or more risk factors or older patients with no risk factors) until further research is available. Patients’ willingness to undergo long-term aspirin therapy should also be considered (131). Aspirin use in patients aged <21 years is generally contraindicated due to the associated risk of Reye syndrome.

Aspirin Dosing

Average daily dosages used in most clinical trials involving patients with diabetes ranged from 50 mg to 650 mg but were mostly in the range of 100–325 mg/day. There is little evidence to support any specific dose, but using the lowest possible dose may help to reduce side effects (132). In the U.S., the most common low-dose tablet is 81 mg. Although platelets from patients with diabetes have altered function, it is unclear what, if any, effect that finding has on the required dose of aspirin for cardioprotective effects in the patient with diabetes. Many alternate pathways for platelet activation exist that are independent of thromboxane A2 and thus are not sensitive to the effects of aspirin (133). “Aspirin resistance” has been described in patients with diabetes when measured by a variety of ex vivo and in vitro methods (platelet aggregometry, measurement of thromboxane B2) (134), but other studies suggest no impairment in aspirin response among patients with diabetes (135). A recent trial suggested that more frequent dosing regimens of aspirin may reduce platelet reactivity in individuals with diabetes (136); however, these observations alone are insufficient to empirically recommend that higher doses of aspirin be used in this group at this time. Another recent meta-analysis raised the hypothesis that low-dose aspirin efficacy is reduced in those weighing more than 70 kg (137); however, the ASCEND trial found benefit of low dose aspirin in those in this weight range, which would thus not validate this suggested hypothesis (121). It appears that 75–162 mg/day is optimal.

Indications for P2Y12 Receptor Antagonist Use

A P2Y12 receptor antagonist in combination with aspirin should be used for at least 1 year in patients following an ACS and may have benefits beyond this period. Evidence supports use of either ticagrelor or clopidogrel if no percutaneous coronary intervention was performed and clopidogrel, ticagrelor, or prasugrel if a percutaneous coronary intervention was performed (138). In patients with diabetes and prior MI (1–3 years before), adding ticagrelor to aspirin significantly reduces the risk of recurrent ischemic events including cardiovascular and CHD death (139).

Cardiovascular Disease

Recommendations

Screening

10.34 In asymptomatic patients, routine screening for coronary artery disease is not recommended as it does not improve outcomes as long as atherosclerotic cardiovascular disease risk factors are treated. A

10.35 Consider investigations for coronary artery disease in the presence of any of the following: atypical cardiac symptoms (e.g., unexplained dyspnea, chest discomfort); signs or symptoms of associated vascular disease including carotid bruits, transient ischemic attack, stroke, claudication, or peripheral arterial disease; or electrocardiogram abnormalities (e.g., Q waves). E

Treatment

10.36 In patients with known atherosclerotic cardiovascular disease, consider ACE inhibitor or angiotensin receptor blocker therapy to reduce the risk of cardiovascular events. B

10.37 In patients with prior myocardial infarction, β-blockers should be continued for at least 2 years after the event. B

10.38 In patients with type 2 diabetes with stable congestive heart failure, metformin may be used if estimated glomerular filtration rate remains >30 mL/min but should be avoided in unstable or hospitalized patients with congestive heart failure. B

10.39 Among patients with type 2 diabetes who have established atherosclerotic cardiovascular disease, sodium–glucose co-transporter 2 inhibitors or glucagon-like peptide 1 receptor agonists with demonstrated cardiovascular disease benefit (Table 9.1) are recommended as part of the antihyperglycemic regimen. A

10.40 Among patients with atherosclerotic cardiovascular disease at high risk of heart failure or in whom heart failure coexists, sodium–glucose co-transporter 2 inhibitors are preferred. C

Cardiac Testing

Candidates for advanced or invasive cardiac testing include those with 1) typical or atypical cardiac symptoms and
2) an abnormal resting electrocardiogram (ECG). Exercise ECG testing without or with echocardiography may be used as the initial test. In adults with diabetes ≥40 years of age, measurement of coronary artery calcium is also reasonable for cardiovascular risk assessment. Pharmacologic stress echocardiography or nuclear imaging should be considered in individuals with diabetes in whom resting ECG abnormalities preclude exercise stress testing (e.g., left bundle branch block or ST-T abnormalities). In addition, individuals who require stress testing and are unable to exercise should undergo pharmacologic stress echocardiography or nuclear imaging.

Screening Asymptomatic Patients

The screening of asymptomatic patients with high ASCVD risk is not recommended (140), in part because these high-risk patients should already be receiving intensive medical therapy—an approach that provides similar benefit as invasive revascularization (141,142). There is also some evidence that silent ischemia may reverse over time, adding to the controversy concerning aggressive screening strategies (143). In prospective studies, coronary artery calcium has been established as an independent predictor of future ASCVD events in patients with diabetes and is consistently superior to both the UK Prospective Diabetes Study (UKPDS) risk engine and the Framingham Risk Score in predicting risk in this population (144–146). However, a randomized observational trial demonstrated no clinical benefit to routine screening of asymptomatic patients with type 2 diabetes and normal ECGs (147). Despite abnormal myocardial perfusion imaging in more than one in five patients, cardiac outcomes were essentially equal (and very low) in screened versus unscreened patients. Accordingly, indiscriminate screening is not considered cost-effective. Studies have found that a risk factor–based approach to the initial diagnostic evaluation and subsequent follow-up for coronary artery disease fails to identify which patients with type 2 diabetes will have silent ischemia on screening tests (148,149).

Any benefit of newer noninvasive coronary artery disease screening methods, such as computed tomography calcium scoring and computed tomography angiography, to identify patient subgroups for different treatment strategies remains unproven in asymptomatic patients with diabetes, though research is ongoing. Although asymptomatic patients with diabetes with higher coronary disease burden have more future cardiac events (144,150,151), the role of these tests beyond risk stratification is not clear.

While coronary artery screening methods, such as calcium scoring, may improve cardiovascular risk assessment in people with type 2 diabetes (152), their routine use leads to radiation exposure and may result in unnecessary invasive testing such as coronary angiography and revascularization procedures. The ultimate balance of benefit, cost, and risks of such an approach in asymptomatic patients remains controversial, particularly in the modern setting of aggressive ASCVD risk factor control.

Lifestyle and Pharmacologic Interventions

Intensive lifestyle intervention focusing on weight loss through decreased caloric intake and increased physical activity as performed in the Action for Health in Diabetes (Look AHEAD) trial may be considered for improving glucose control, fitness, and some ASCVD risk factors (153). Patients at increased ASCVD risk should receive aspirin and a statin and ACE inhibitor orARB therapy if the patient has hypertension, unless there are contraindications to a particular drug class. While clear benefit exists for ACE inhibitor or ARB therapy in patients with diabetic kidney disease or hypertension, the benefits in patients with ASCVD in the absence of these conditions are less clear, especially when LDL cholesterol is concomitantly controlled (154,155). In patients with prior MI, active angina, or HFrEF, β-blockers should be used (156).

Antihyperglycemic Therapies and Cardiovascular Outcomes

In 2008, the FDA issued a guidance for industry to perform cardiovascular outcomes trials for all new medications for the treatment for type 2 diabetes amid concerns of increased cardiovascular risk (157). Previously approved diabetes medications were not subject to the guidance. Recently published cardiovascular outcomes trials have provided additional data on cardiovascular outcomes in patients with type 2 diabetes with cardiovascular disease or at high risk for cardiovascular disease (see Table 10.4). Cardiovascular outcomes trials of dipeptidyl peptidase 4 (DPP-4) inhibitors have all, so far, not shown cardiovascular benefits relative to placebo. However, results from other new agents have provided a mix of results.

The BI 10773 (Empagliflozin) Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME) trial was a randomized, double-blind trial that assessed the effect of empagliflozin, an SGLT2 inhibitor, versus placebo on cardiovascular outcomes in 7,020 patients with type 2 diabetes and existing cardiovascular disease. Study participants had a mean age of 63 years, 57% had diabetes for more than 10 years, and 99% had established cardiovascular disease. EMPA-REG OUTCOME showed that over a median follow-up of 3.1 years, treatment reduced the composite outcome of MI, stroke, and cardiovascular death by 14% (absolute rate 10.5% vs. 12.1% in the placebo group, HR in the empagliflozin group 0.86; 95% CI 0.74–0.99; P = 0.04 for superiority) and cardiovascular death by 38% (absolute rate 3.7% vs. 5.9%, HR 0.62; 95% CI 0.49–0.77; P < 0.001) (8). The FDA added an indication for empagliflozin to reduce the risk of major adverse cardiovascular death in adults with type 2 diabetes and cardiovascular disease.

A second large cardiovascular outcomes trial program of an SGLT2 inhibitor, canagliflozin, has been reported (9). The Canagliflozin Cardiovascular Assessment Study (CANVAS) integrated data from two trials, including the CANVAS trial that started in 2009 before the approval of canagliflozin and the CANVAS-Renal (CANVAS-R) trial that started in 2014 after the approval of canagliflozin. Combining both these trials, 10,142 participants with type 2 diabetes (two-thirds with established CVD) were randomized to canagliflozin or placebo and were followed for an average 3.6 years. The mean age of patients was 63 years and 66% had a history of cardiovascular disease. The combined analysis of the two trials found that canagliflozin significantly reduced the composite outcome of cardiovascular death, MI, or stroke versus placebo (occurring in 26.9 vs. 31.5 participants per 1,000 patient-years; HR 0.86 [95% CI 0.75–0.97]; P < 0.001 for noninferiority; P = 0.02 for superiority). The specific
estimates for canagliflozin versus placebo on the primary composite cardiovascular outcome were HR 0.88 (0.75–1.03) for the CANVAS trial and 0.82 (0.66–1.01) for CANVAS-R, with no heterogeneity found between trials. In the combined analysis, there was not a statistically significant difference in cardiovascular death (HR 0.87 [95% CI 0.72–1.06]). The initial CANVAS trial was partially unblinded prior to completion because of the need to file interim cardiovascular outcomes data for regulatory approval of the drug (158). Of note, there was an increased risk of lower-limb amputation with canagliflozin (6.3 vs. 3.4 participants per 1,000 patient-years; HR 1.97 [95% CI 1.41–2.75]) (9).

The Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results (LEADER) trial was a randomized, double-blind trial that assessed the effect of liraglutide, a glucagon-like peptide 1 (GLP-1) receptor agonist, versus placebo on cardiovascular outcomes in 9,340 patients with type 2 diabetes at high risk for cardiovascular disease or with cardiovascular disease. Study participants had a mean age of 64 years and a mean duration of diabetes of nearly 13 years. Over 80% of study participants had established cardiovascular disease. After a median follow-up of 3.8 years, LEADER showed that the primary composite outcome (MI, stroke, or cardiovascular death) occurred in fewer participants in the treatment group (13.0%) when compared with the placebo group (14.9%) (HR 0.87; 95% CI 0.78–0.97; P < 0.001 for non-inferiority; P = 0.01 for superiority). Deaths from cardiovascular causes were significantly reduced in the liraglutide group (4.7%) compared with the placebo group (6.0%) (HR 0.78; 95% CI 0.66–0.93; P = 0.007) (159). The FDA approved the use of liraglutide to reduce the risk of major adverse cardiovascular events, including heart attack, stroke, and cardiovascular death, in adults with type 2 diabetes and established cardiovascular disease.

Results from a moderate-sized trial of another GLP-1 receptor agonist, semaglutide, were consistent with the LEADER trial (160). Semaglutide is a once-weekly GLP-1 receptor agonist approved by the FDA for the treatment of type 2 diabetes. The Trial to Evaluate Cardiovascular and Other Long-term Outcomes With Semaglutide in Subjects With Type 2 Diabetes (SUSTAIN-6) was the initial randomized trial powered to test noninferiority of semaglutide for the purpose of initial regulatory approval. In this study, 3,297 patients with type 2 diabetes were randomized to receive once-weekly semaglutide (0.5 mg or 1.0 mg) or placebo for 2 years. The primary outcome (the first occurrence of cardiovascular death, nonfatal MI, or nonfatal stroke) occurred in 108 patients (6.6%) in the semaglutide group vs. 146 patients (8.9%) in the placebo group (HR 0.74 [95% CI 0.58–0.95]; P < 0.001). More patients discontinued treatment in the semaglutide group because of adverse events, mainly gastrointestinal.

The Evaluation of Lixisenatide in Acute Coronary Syndrome (ELIXA) trial studied the once-daily GLP-1 receptor agonist lixisenatide on cardiovascular outcomes in patients with type 2 diabetes who had had a recent acute coronary event (161). A total of 6,068 patients with type 2 diabetes with a recent hospitalization for MI or unstable angina within the previous 180 days were randomized to receive lixisenatide or placebo in addition to standard care and were followed for a median of approximately 2.1 years. The primary outcome of cardiovascular death, MI, stroke, or hospitalization for unstable angina occurred in 406 patients (13.4%) in the lixisenatide group vs. 399 (13.2%) in the placebo group (HR 1.2 [95% CI 0.89–1.17]), which demonstrated the noninferiority of lixisenatide to placebo (P < 0.001) but did not show superiority (P = 0.81).

The Exenatide Study of Cardiovascular Event Lowering (EXSCEL) trial also reported results with the once-weekly GLP-1 receptor agonist extended-release exenatide and found that major adverse cardiovascular events were numerically lower with use of extended-release exenatide compared with placebo, although this difference was not statistically significant (162). A total of 14,752 patients with type 2 diabetes (of whom 10,782 [73.1%] had previous cardiovascular disease) were randomized to receive extended-release exenatide 2 mg or placebo and followed for a median of 3.2 years. The primary end point of cardiovascular death, MI, or stroke occurred in 839 patients (11.4%; 3.7 events per 100 person-years) in the exenatide group and in 905 patients (12.2%; 4.0 events per 100 person-years) in the placebo group (HR 0.91 [95% CI 0.83–1.00]; P < 0.001 for noninferiority) but was not superior to placebo with respect to the primary end point (P = 0.06 for superiority). However, all-cause mortality was lower in the exenatide group (HR 0.86 [95% CI 0.77–0.97]). The incidence of acute pancreatitis, pancreatic cancer, medullary thyroid carcinoma, and serious adverse events did not differ significantly between the two groups.

The Harmony Outcomes trial randomized 9,463 patients with type 2 diabetes and cardiovascular disease to once-weekly subcutaneous albiglutide or matching placebo, in addition to their standard care. Over a median duration of 1.6 years, the GLP-1 receptor agonist reduced the risk of cardiovascular death, MI, or stroke to an incidence rate of 4.6 events per 100 person-years in the albiglutide group vs. 5.9 events in the placebo group (HR ratio 0.78, P = 0.0006 for superiority) (163). This agent is not currently available for clinical use.

In summary, there are now several large randomized controlled trials reporting statistically significant reductions in cardiovascular events for two of the FDA-approved SGLT2 inhibitors (empagliflozin and canagliflozin) and three FDA-approved GLP-1 receptor agonists (liraglutide, albiglutide [although that agent was removed from the market for business reasons], and semaglutide [lower risk of cardiovascular events in a moderate-sized clinical trial but one not powered as a cardiovascular outcomes trial]). In these trials, the majority, if not all, patients in the trial had ASCVD. The empagliflozin and liraglutide trials further demonstrated significant reductions in cardiovascular death. Once-weekly exenatide did not have statistically significant reductions in major adverse cardiovascular events or cardiovascular mortality but did have a significant reduction in all-cause mortality. In contrast, other GLP-1 receptor agonists have not shown similar reductions in cardiovascular events (Table 10.4). Additional large randomized trials of other agents in these classes are ongoing.

Of note, these studies examined the drugs in combination with metformin (Table 10.4) in the great majority of patients for whom metformin was not contraindicated or was tolerated. For patients with type 2 diabetes who have ASCVD, on lifestyle and metformin
<table>
<thead>
<tr>
<th>Interventions</th>
<th>Saxagliptin/placebo</th>
<th>Alogliptin/placebo</th>
<th>Sitagliptin/placebo</th>
<th>Lixisenatide/placebo</th>
<th>Liraglutide/placebo</th>
<th>Semaglutide/placebo</th>
<th>Exenatide QW/placebo</th>
<th>Empagliflozin/placebo</th>
<th>Canagliflozin/placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main inclusion criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2 diabetes and history of or multiple risk factors for CVD before randomization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2 diabetes and ACS within 15–90 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2 diabetes and history of ACS (<180 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2 diabetes and preexisting CVD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2 diabetes and preexisting CVD, kidney disease, or HF at ≥50 years of age or cardiovascular risk at ≥50 years of age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2 diabetes and preexisting CVD, HF, or CVD at ≥50 years of age or ≥60 years of age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2 diabetes with or without preexisting CVD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2 diabetes and preexisting CVD at ≥30 years of age or ≥2 cardiovascular risk factors at ≥50 years of age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1C inclusion criteria (%)</td>
<td>≥6.5</td>
<td>6.5–11.0</td>
<td>6.5–8.0</td>
<td>5.5–11.0</td>
<td>≥7.0</td>
<td>≥7.0</td>
<td>6.5–10.0</td>
<td>7.0–10.0</td>
<td>7.0–10.5</td>
</tr>
<tr>
<td>Age (years)††</td>
<td>65.1</td>
<td>61.0</td>
<td>65.4</td>
<td>60.3</td>
<td>64.3</td>
<td>64.6</td>
<td>62</td>
<td>63.1</td>
<td>63.3</td>
</tr>
<tr>
<td>Diabetes duration (years)††</td>
<td>10.3</td>
<td>7.1</td>
<td>11.6</td>
<td>9.3</td>
<td>12.8</td>
<td>13.9</td>
<td>12</td>
<td>57% >10</td>
<td>13.5</td>
</tr>
<tr>
<td>Median follow-up (years)</td>
<td>2.1</td>
<td>1.5</td>
<td>3.0</td>
<td>2.1</td>
<td>3.8</td>
<td>2.1</td>
<td>3.2</td>
<td>3.1</td>
<td>5.7</td>
</tr>
<tr>
<td>Statin use (%)</td>
<td>78</td>
<td>91</td>
<td>80</td>
<td>93</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>77</td>
<td>75</td>
</tr>
<tr>
<td>Metformin use (%)</td>
<td>70</td>
<td>66</td>
<td>82</td>
<td>76</td>
<td>73</td>
<td>77</td>
<td>74</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>Prior CVD/CHF (%)</td>
<td>78/13</td>
<td>100/28</td>
<td>74/18</td>
<td>100/22</td>
<td>81/18</td>
<td>60/24</td>
<td>73.1/16.2</td>
<td>99/10</td>
<td>65.6/14.4</td>
</tr>
<tr>
<td>Mean baseline A1C (%)</td>
<td>8.0</td>
<td>8.0</td>
<td>7.2</td>
<td>7.7</td>
<td>8.7</td>
<td>8.7</td>
<td>8.0</td>
<td>8.1</td>
<td>8.2</td>
</tr>
<tr>
<td>Mean difference in A1C between groups at end of treatment (%)</td>
<td>−0.3*</td>
<td>−0.3*</td>
<td>−0.3*</td>
<td>−0.3*</td>
<td>−0.4*</td>
<td>−0.7 or −1.0††</td>
<td>−0.53*</td>
<td>−0.3*†</td>
<td>−0.58*</td>
</tr>
<tr>
<td>Primary outcome§</td>
<td>3-point MACE</td>
<td>3-point MACE</td>
<td>4-point MACE</td>
<td>4-point MACE</td>
<td>3-point MACE</td>
<td>3-point MACE</td>
<td>3-point MACE</td>
<td>3-point MACE</td>
<td>Progression to albuminuria**</td>
</tr>
<tr>
<td></td>
<td>1.00 (0.89–1.12)</td>
<td>0.96 (0.95–1.12)</td>
<td>0.98 (0.89–1.08)</td>
<td>1.02 (0.89–1.17)</td>
<td>0.87 (0.78–0.97)</td>
<td>0.74 (0.58–0.95)</td>
<td>0.91 (0.83–1.00)</td>
<td>0.86 (0.74–0.99)</td>
<td>0.86 (0.75–0.97)</td>
</tr>
<tr>
<td>Key secondary outcome§</td>
<td>Expanded MACE</td>
<td>4-point MACE</td>
<td>3-point MACE</td>
<td>Expanded MACE</td>
<td>Expanded MACE</td>
<td>Individual components of MACE (see below)</td>
<td>4-point MACE</td>
<td>All-cause and cardiovascular mortality (see below)</td>
<td>40% reduction in composite eGFR, renal replacement, renal death</td>
</tr>
<tr>
<td></td>
<td>1.02 (0.94–1.11)</td>
<td>0.95 (0.95–1.12)</td>
<td>0.99 (0.89–1.10)</td>
<td>1.00 (0.90–1.11)</td>
<td>0.88 (0.81–0.96)</td>
<td>0.74 (0.62–0.89)</td>
<td>0.89 (0.78–1.01)</td>
<td>0.89 (0.78–1.01)</td>
<td>0.60 (0.47–0.77)</td>
</tr>
<tr>
<td>Cardiovascular death§</td>
<td>1.03 (0.87–1.22)</td>
<td>0.85 (0.66–1.10)</td>
<td>1.03 (0.89–1.19)</td>
<td>0.98 (0.78–1.22)</td>
<td>0.78 (0.66–0.93)</td>
<td>0.98 (0.65–1.48)</td>
<td>0.88 (0.76–1.02)</td>
<td>0.62 (0.49–0.77)</td>
<td>0.96 (0.77–1.21)</td>
</tr>
<tr>
<td>Mİ§</td>
<td>0.95 (0.80–1.12)</td>
<td>1.08 (0.88–1.33)</td>
<td>0.95 (0.81–1.11)</td>
<td>1.03 (0.87–1.22)</td>
<td>0.86 (0.73–1.00)</td>
<td>0.74 (0.51–1.08)</td>
<td>0.97 (0.85–1.05)</td>
<td>0.87 (0.70–1.09)</td>
<td>0.85 (0.65–1.11)</td>
</tr>
<tr>
<td>Stroke§</td>
<td>1.11 (0.88–1.39)</td>
<td>0.91 (0.55–1.50)</td>
<td>0.97 (0.79–1.19)</td>
<td>1.12 (0.97–1.38)</td>
<td>0.86 (0.71–1.06)</td>
<td>0.61 (0.38–0.99)</td>
<td>0.85 (0.70–1.03)</td>
<td>1.18 (0.89–1.56)</td>
<td>0.97 (0.70–1.35)</td>
</tr>
<tr>
<td>HF hospitalization§</td>
<td>1.27 (1.07–1.51)</td>
<td>1.19 (0.90–1.58)</td>
<td>1.00 (0.83–1.20)</td>
<td>0.96 (0.75–1.23)</td>
<td>0.87 (0.73–1.05)</td>
<td>1.11 (0.77–1.61)</td>
<td>0.94 (0.78–1.13)</td>
<td>0.65 (0.50–0.85)</td>
<td>0.77 (0.55–1.08)</td>
</tr>
</tbody>
</table>

Continued on p. S118
Table 10.4—Continued

<table>
<thead>
<tr>
<th>SAVOR-TIMI (53) (168)</th>
<th>EXAMINE (175)</th>
<th>TECOS (171)</th>
<th>ELIXA (161)</th>
<th>LEADER (159)</th>
<th>SUSTAIN-6 (160)*</th>
<th>EXSCEL (162)</th>
<th>EMPA-REG OUTCOME (8)</th>
<th>CANVAS (9)</th>
<th>CANVAS-R (9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 16,492)</td>
<td>(n = 5,380)</td>
<td>(n = 14,671)</td>
<td>(n = 6,068)</td>
<td>(n = 9,340)</td>
<td>(n = 3,297)</td>
<td>(n = 14,752)</td>
<td>(n = 7,020)</td>
<td>(n = 4,330)</td>
<td>(n = 5,812)</td>
</tr>
</tbody>
</table>

Cardiovascular Disease and Risk Management

Table 10.4—Continued

<table>
<thead>
<tr>
<th>DPP-4 inhibitors</th>
<th>GLP-1 receptor agonists</th>
<th>SGLT2 inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstable angina hospitalization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.19 (0.89–1.60)</td>
<td>0.90 (0.60–1.37)</td>
<td>0.90 (0.70–1.16)</td>
</tr>
<tr>
<td>1.11 (0.47–2.62)</td>
<td>0.98 (0.76–1.26)</td>
<td>0.82 (0.47–1.44)</td>
</tr>
<tr>
<td>0.98 (0.74–1.34)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

All-cause mortality

1.11 (0.96–1.27)	0.88 (0.71–1.09)	1.01 (0.90–1.14)
0.94 (0.78–1.13)	0.85 (0.74–0.97)	1.05 (0.74–1.50)
0.86 (0.77–0.97)	0.68 (0.57–0.82)	0.87 (0.74–1.01)

Worsening nephropathy

1.08 (0.89–1.32)	—	—
0.78 (0.67–0.92)	0.64 (0.46–0.88)	—
0.61 (0.53–0.70)	0.60 (0.47–0.77)	—

—, not assessed/reported; ACS, acute coronary syndrome; CHF, congestive heart failure; CKD, chronic kidney disease; CVD, cardiovascular disease; DPP-4, dipeptidyl peptidase 4; eGFR, estimated glomerular filtration rate; GLP-1, glucagon-like peptide 1; HF, heart failure; MACE, major adverse cardiac event; MI, myocardial infarction; SGLT2, sodium-glucose cotransporter 2; UL, upper limit. Data from this table was adapted from Cefalu et al. (176) in the January 2018 issue of Diabetes Care. *Supported by the American Diabetes Association. **On the basis of prespecified outcomes, the renal outcomes are not viewed as statistically significant. †Age was reported as means in all trials except EXAMINE, which reported medians; diabetes duration was reported as means in all but four trials, with SAVOR-TIMI 58, EXAMINE, and EXSCEL reporting medians and EMPA-REG OUTCOME reporting as percentage of population with diabetes duration >10 years. ‡A1C change of 0.66% with 0.5 mg and 1.05% with 1 mg dose of semaglutide. $A1C change of 0.30 in EMPA-REG OUTCOME is based on pooled results for both doses (i.e., 0.24% for 10 mg and 0.36% for 25 mg of empagliflozin). ‖A1C change of 0.66% with 0.5 mg dose of semaglutide. †‖A1C change of 0.52% with 1 mg dose of semaglutide. §Outcomes reported as hazard ratio (95% CI). ¶Truncated data set (prespecified in treating hierarchy as the principal data set for analysis for superiority of all-cause mortality and cardiovascular death in the CANVAS Program). **Significant difference in A1C between groups (P < 0.05). #Nontruncated data set. §§Truncated integrated data set (refers to pooled data from CANVAS after 20 November 2012 plus CANVAS-R; prespecified in treating hierarchy as the principal data set for analysis for superiority of all-cause mortality and cardiovascular death in the CANVAS Program). §§Nontruncated integrated data (refers to pooled data from CANVAS, including before 20 November 2012 plus CANVAS-R).
found and the agents had a neutral effect on hospitalization for heart failure (159–162).

A benefit on the incidence of heart failure has been observed with the use of some SGLT2 inhibitors. In EMPA-REG OUTCOME, the addition of empagliflozin to standard care led to a significant 35% reduction in hospitalization for heart failure compared with placebo (8). Although the majority of patients in the study did not have heart failure at baseline, this benefit was consistent in patients with and without a prior history of heart failure (172). Similarly, in CANVAS, there was a 33% reduction in hospitalization for heart failure with canagliflozin versus placebo (9). Although heart failure hospitalizations were prospectively adjudicated in both trials, the type(s) of heart failure events prevented were not characterized. These preliminary findings, which strongly suggest heart failure–related benefits of SGLT2 inhibitors (particularly the prevention of heart failure), are being followed up with new outcomes trials in patients with established heart failure, both with and without diabetes, to determine their efficacy in treatment of heart failure.

References
34. Lamprea-Montealegre JA, de Boer IH. Re-evaluating the evidence for blood pressure targets in type 2 Diabetes. Diabetes Care 2018;41:1132–1133.
35. de Boer IH, Bakris G, Cannon CP, individualizing blood pressure targets for people with

155. Telsimaart Randomised Assessment Study in ACE iNtolerant subjects with cardiovascular

11. Microvascular Complications and Foot Care: *Standards of Medical Care in Diabetes—2019*

Diabetes Care 2019;42(Suppl. 1):S124–S138 | https://doi.org/10.2337/dc19-S011

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

For prevention and management of diabetes complications in children and adolescents, please refer to Section 13 “Children and Adolescents.”

CHRONIC KIDNEY DISEASE

Recommendations

Screening

11.1 At least once a year, assess urinary albumin (e.g., spot urinary albumin-to-creatinine ratio) and estimated glomerular filtration rate in patients with type 1 diabetes with duration of ≥5 years, in all patients with type 2 diabetes, and in all patients with comorbid hypertension. B

Treatment

11.2 Optimize glucose control to reduce the risk or slow the progression of chronic kidney disease. A

11.3 For patients with type 2 diabetes and chronic kidney disease, consider use of a sodium–glucose cotransporter 2 inhibitor or glucagon-like peptide 1 receptor agonist shown to reduce risk of chronic kidney disease progression, cardiovascular events, or both (Table 9.1). C

11.4 Optimize blood pressure control to reduce the risk or slow the progression of chronic kidney disease. A

11.5 For people with nondialysis-dependent chronic kidney disease, dietary protein intake should be approximately 0.8 g/kg body weight per day (the recommended daily allowance). For patients on dialysis, higher levels of dietary protein intake should be considered. B

11.6 In nonpregnant patients with diabetes and hypertension, either an ACE inhibitor or an angiotensin receptor blocker is recommended for those with modestly elevated urinary albumin-to-creatinine ratio (30–299 mg/g creatinine) B and is strongly recommended for those with urinary albumin-to-creatinine
Epidemiology of Diabetes and Chronic Kidney Disease

Chronic kidney disease (CKD) is diagnosed by the persistent presence of elevated urinary albumin excretion (albuminuria), low estimated glomerular filtration rate (eGFR), or other manifestations of kidney damage (1,2). In this section, the focus will be on CKD attributed to diabetes (diabetic kidney disease), which occurs in 20–40% of patients with diabetes (1,3–5). CKD typically develops after diabetes duration of 10 years in type 1 diabetes but may be present at diagnosis of type 2 diabetes. CKD can progress to end-stage renal disease (ESRD) requiring dialysis or kidney transplantation and is the leading cause of ESRD in the U.S. (6). In addition, among people with type 1 or 2 diabetes, the presence of CKD markedly increases cardiovascular risk and health care costs (7).

Assessment of Albuminuria and Estimated Glomerular Filtration Rate

Screening for albuminuria can be most easily performed by urinary albumin-to-creatinine ratio (UACR) in a random spot urine collection (1,2). Timed or 24-h collections are more burdensome and add little to prediction or accuracy. Measurement of a spot urine sample for albumin alone (whether by immunoassay or by using a sensitive dipstick test specific for albuminuria) without simultaneously measuring urine creatinine (Cr) is less expensive but susceptible to false-negative and false-positive determinations as a result of variation in urine concentration due to hydration.

Normal UACR is generally defined as <30 mg/g Cr, and increased urinary albumin excretion is defined as ≥30 mg/g Cr. However, UACR is a continuous measurement, and differences within the normal and abnormal ranges are associated with renal and cardiovascular outcomes (7–9). Furthermore, because of biological variability in urinary albumin excretion, two of three specimens of UACR collected within a 3- to 6-month period should be abnormal before considering a patient to have albuminuria. Exercise within 24 h, infection, fever, congestive heart failure, marked hyperglycemia, menstruation, and marked hypertension may elevate UACR independently of kidney damage.

eGFR should be calculated from serum Cr using a validated formula. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation is generally preferred (2). eGFR is routinely reported by laboratories with serum Cr, and eGFR calculators are available from www.kidney.org. An eGFR <60 mL/min/1.73 m² is generally considered abnormal, though optimal thresholds for clinical diagnosis are debated (10).

Urinary albumin excretion and eGFR each vary within people over time, and abnormal results should be confirmed to stage CKD (1,2).

Diagnosis of Diabetic Kidney Disease

Diabetic kidney disease is usually a clinical diagnosis made based on the presence of albuminuria and/or reduced eGFR in the absence of signs or symptoms of other primary causes of kidney damage. The typical presentation of diabetic kidney disease is considered to include a long-standing duration of diabetes, retinopathy, albuminuria without hematuria, and gradually progressive loss of eGFR. However, signs of CKD may be present at diagnosis or without retinopathy in type 2 diabetes, and reduced eGFR without albuminuria has been frequently reported in type 1 and type 2 diabetes and is becoming more common over time as the prevalence of diabetes increases in the U.S. (3,4,11,12).

An active urinary sediment (containing red or white blood cells or cellular casts), rapidly increasing albuminuria or nephrotic syndrome, rapidly decreasing eGFR, or the absence of retinopathy (in type 1 diabetes) may suggest alternative or additional causes of kidney disease. For patients with these features, referral to a nephrologist for further diagnosis, including the possibility of kidney biopsy, should be considered. It is rare for patients with type 1 diabetes to develop kidney disease without retinopathy. In type 2 diabetes, retinopathy is only moderately sensitive and specific for CKD caused by diabetes, as confirmed by kidney biopsy (13).

Staging of Chronic Kidney Disease

Stages 1–2 CKD have been defined by evidence of kidney damage (usual albuminuria) with eGFR ≥60 mL/min/1.73 m², while stages 3–5 CKD have been defined by progressively lower ranges of eGFR (14) (Table 11.1). At any eGFR, the degree of albuminuria is associated with risk of CKD progression, cardiovascular disease (CVD), and mortality (7). Therefore, Kidney Disease: Improving Global Outcomes (KDIGO) recommends a more comprehensive CKD staging that incorporates albuminuria at all stages of eGFR; this system is more closely associated with risk but is also more complex and does not translate directly to treatment decisions (2). Regardless of classification scheme, both eGFR and albuminuria should be quantified to guide treatment decisions: CKD complications (Table 11.2) correlate with eGFR, many drugs are limited to

Continued monitoring of urinary albumin-to-creatinine ratio in patients with albuminuria treated with an ACE inhibitor or an angiotensin receptor blocker is not recommended for the primary prevention of chronic kidney disease in patients with diabetes who have normal blood pressure, normal urinary albumin-to-creatinine ratio (<30 mg/g creatinine), and normal estimated glomerular filtration rate.

Patients should be referred for evaluation for renal replacement treatment if they have an estimated glomerular filtration rate <30 mL/min/1.73 m².

Promptly refer to a physician experienced in the care of kidney disease for uncertainty about the etiology of kidney disease, difficult management issues, and rapidly progressing kidney disease.

Periodically monitor serum creatinine and potassium levels for the development of increased creatinine or changes in potassium when ACE inhibitors, angiotensin receptor blockers, or diuretics are used.

Chronic kidney disease (CKD) is diagnosed by the persistent presence of elevated urinary albumin excretion (albuminuria), low estimated glomerular filtration rate (eGFR), or other manifestations of kidney damage (1,2). In this section, the focus will be on CKD attributed to diabetes (diabetic kidney disease), which occurs in 20–40% of patients with diabetes (1,3–5). CKD typically...
acceptable eGFR ranges, and the degree of albuminuria may influence choice of antihypertensive (see Section 10 “Cardiovascular Disease and Risk Management”) or glucose-lowering medications (see below). Observed history of eGFR loss (which is also associated with risk of CKD progression and other adverse health outcomes) and cause of kidney damage (including possible causes other than diabetes) may also affect these decisions (15).

Acute Kidney Injury

Acute kidney injury (AKI) is usually diagnosed by a rapid increase in serum Cr, which is also reflected as a rapid decrease in eGFR, over a relatively short period of time. People with diabetes are at higher risk of AKI than those without diabetes (16). Other risk factors for AKI include preexisting CKD, the use of medications that cause kidney injury (e.g., nonsteroidal anti-inflammatory drugs), and the use of medications that alter renal blood flow and intrarenal hemodynamics. In particular, many antihypertensive medications (e.g., diuretics, ACE inhibitors, and angiotensin receptor blockers [ARBs]) can reduce intravascular volume, renal blood flow, and/or glomerular filtration. There is a concern that sodium–glucose cotransporter 2 (SGLT2) inhibitors may promote AKI through volume depletion, particularly when combined with diuretics or other medications that reduce glomerular filtration. However, existing evidence from clinical trials and observational studies suggests that SGLT2 inhibitors do not significantly increase AKI (17–19). Timely identification and treatment of AKI are important because AKI is associated with increased risks of progressive CKD and other poor health outcomes (20).

Table 11.1—CKD stages and corresponding focus of kidney-related care

<table>
<thead>
<tr>
<th>Stage</th>
<th>CKD stage†</th>
<th>Evidence of kidney damage*</th>
<th>Diagnose cause of kidney injury</th>
<th>Evaluate and treat risk factors for CKD progression**</th>
<th>Evaluate and treat CKD complications***</th>
<th>Prepare for renal replacement therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No clinical evidence of CKD</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>≥60</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>60–89</td>
<td>+</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>30–59</td>
<td>+/−</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>15–29</td>
<td>+/−</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td><15</td>
<td>+/−</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate. †CKD stages 1 and 2 are defined by evidence of kidney damage (+), while CKD stages 3–5 are defined by reduced eGFR with or without evidence of kidney damage (+/−). At any stage of CKD, the degree of albuminuria, observed history of eGFR loss, and cause of kidney damage (including possible causes other than diabetes) may also be used to characterize CKD, gauge prognosis, and guide treatment decisions. *Kidney damage is most often manifest as albuminuria (UACR ≥30 mg/g Cr) but can also include glomerular hematuria, other abnormalities of the urinary sediment, radiographic abnormalities, and other presentations. **Risk factors for CKD progression include elevated blood pressure, hyperglycemia, and albuminuria. ***See Table 11.2.

Table 11.2—Selected complications of CKD

<table>
<thead>
<tr>
<th>Complication</th>
<th>Medical and laboratory evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated blood pressure</td>
<td>Blood pressure, weight</td>
</tr>
<tr>
<td>Volume overload</td>
<td>History, physical examination, weight</td>
</tr>
<tr>
<td>Electrolyte abnormalities</td>
<td>Serum electrolytes</td>
</tr>
<tr>
<td>Metabolic acidosis</td>
<td>Serum electrolytes</td>
</tr>
<tr>
<td>Anemia</td>
<td>Hemoglobin; iron testing if indicated</td>
</tr>
<tr>
<td>Metabolic bone disease</td>
<td>Serum calcium, phosphate, PTH, vitamin 25(OH)D</td>
</tr>
</tbody>
</table>

Complications of chronic kidney disease (CKD) generally become prevalent when estimated glomerular filtration rate falls below 60 mL/min/1.73 m² (stage 3 CKD or greater) and become more common and severe as CKD progresses. Evaluation of elevated blood pressure and volume overload should occur at every clinical contact possible; laboratory evaluations are generally indicated every 6–12 months for stage 3 CKD, every 3–5 months for stage 4 CKD, and every 1–3 months for stage 5 CKD, or as indicated to evaluate symptoms or changes in therapy. PTH, parathyroid hormone; 25(OH)D, 25-hydroxyvitamin D.

Surveillance

Albuminuria and eGFR should be monitored regularly to enable timely diagnosis of CKD, monitor progression of CKD, detect superimposed kidney diseases including AKI, assess risk of CKD complications, dose drugs appropriately, and determine whether nephrology referral is needed. Among people with existing kidney disease, albuminuria and eGFR may change due to progression of CKD, development of a separate superimposed cause of kidney disease, AKI, or other effects of medications, as noted above. Serum potassium should also be monitored for patients treated with ACE inhibitors, ARBs, and diuretics because these medications can cause hyperkalemia or hypokalemia, which are associated with cardiovascular risk and mortality (21–23). For patients with eGFR <60 mL/min/1.73 m², appropriate medication dosing should be verified, exposure to nephrotoxins (e.g., nonsteroidal anti-inflammatory drugs and iodinated contrast) should be minimized, and potential CKD complications should be evaluated (Table 11.2).

The need for annual quantitative assessment of albumin excretion after diagnosis of albuminuria, institution of ACE inhibitors or ARB therapy, and achieving blood pressure control is a subject of debate. Continued surveillance can assess both response to therapy and disease progression and may aid in assessing adherence to ACE inhibitor or ARB therapy. In addition, in clinical trials of ACE inhibitors or ARB therapy in type 2 diabetes, reducing albuminuria from
levels \geqslant300 mg/g Cr has been associated with improved renal and cardiovascular outcomes, leading some to suggest that medications should be titrated to minimize UACR. However, this approach has not been formally evaluated in prospective trials. In type 1 diabetes, remission of albuminuria may occur spontaneously and cohort studies evaluating associations of change in albuminuria with clinical outcomes have reported inconsistent results (24,25).

The prevalence of CKD complications correlates with eGFR (25a). When eGFR is <60 mL/min/1.73 m2, screening for complications of CKD is indicated (Table 11.2). Early vaccination against hepatitis B virus is indicated in patients likely to progress to ESRD (see Section 4 “Comprehensive Medical Evaluation and Assessment of Comorbidities” for further information on immunization).

Interventions

Nutrition

For people with nondialysis-dependent CKD, dietary protein intake should be approximately 0.8 g/kg body weight per day (the recommended daily allowance) (1). Compared with higher levels of dietary protein intake, this level slowed GFR decline with evidence of a greater effect over time. Higher levels of dietary protein intake (>20% of daily calories from protein or >1.3 g/kg/day) have been associated with increased albuminuria, more rapid kidney function loss, and CVD mortality and therefore should be avoided. Reducing the amount of dietary protein below the recommended daily allowance of 0.8 g/kg/day is not recommended because it does not alter glyceric measures, cardiovascular risk measures, or the course of GFR decline.

Restriction of dietary sodium (to <2,300 mg/day) may be useful to control blood pressure and reduce cardiovascular risk (26), and restriction of dietary potassium may be necessary to control serum potassium concentration (16,21–23). These interventions may be most important for patients with reduced eGFR, for whom urinary excretion of sodium and potassium may be impaired. Recommendations for dietary sodium and potassium intake should be individualized on the basis of comorbid conditions, medication use, blood pressure, and laboratory data.

Glycemic Targets

Intensive glycemic control with the goal of achieving near-normoglycemia has been shown in large prospective randomized studies to delay the onset and progression of albuminuria in diabetes and reduced eGFR in a variety of agents, including those used in clinical trials of type 2 diabetes, supporting the conclusion that glyceric control itself helps prevent CKD and its progression. The effects of glucose-lowering therapies on CKD have helped define A1C targets (see Table 6.2).

The presence of CKD affects the risks and benefits of intensive glycemic control and a number of specific glucose-lowering medications. In the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial of type 2 diabetes, adverse effects of intensive glycemic control (hypoglycemia and mortality) were increased among patients with kidney disease at baseline (35,36). Moreover, there is a lag time of at least 2 years in type 2 diabetes to over 10 years in type 1 diabetes for the effects of intensive glucose control to manifest as improved eGFR outcomes (33,37,38). Therefore, in some patients with prevalent CKD and substantial comorbidity, target A1C levels may be less intensive (1,39).

Direct Renal Effects of Glucose-Lowering Medications

Some glucose-lowering medications also have effects on the kidney that are direct, i.e., not mediated through glycemia. For example, SGLT2 inhibitors reduce renal tubular glucose reabsorption, weight, systemic blood pressure, intraglomerular pressure, and albuminuria and slow GFR loss through mechanisms that appear independent of glycemia (18,40–43). Glucagon-like peptide 1 receptor agonists (GLP-1 RA) also have direct effects on the kidney and have been reported to improve renal outcomes compared with placebo (44–47). Renal effects should be considered when selecting antihyperglycemia agents (see Section 9 “Pharmacologic Approaches to Glycemic Treatment”).

Selection of Glucose-Lowering Medications for Patients With Chronic Kidney Disease

For patients with type 2 diabetes and established CKD, special considerations for the selection of glucose-lowering medications include limitations to available medications when eGFR is diminished and a desire to mitigate high risks of CKD progression, CVD, and hypoglycemia (48,49). Drug dosing may require modification with eGFR <60 mL/min/1.73 m2 (1).

The U.S. Food and Drug Administration (FDA) revised its guidance for the use of metformin in CKD in 2016 (50), recommending use of eGFR instead of serum Cr to guide treatment and expanding the pool of patients with kidney disease for whom metformin treatment should be considered. The revised FDA guidance states that metformin is contraindicated in patients with an eGFR <30 mL/min/1.73 m2, eGFR should be monitored while taking metformin, the benefits and risks of continuing treatment should be reassessed when eGFR falls <45 mL/min/1.73 m2, metformin should not be initiated for patients with an eGFR <45 mL/min/1.73 m2, and metformin should be temporarily discontinued at the time of or before iodinated contrast imaging procedures in patients with eGFR 30–60 mL/min/1.73 m2. Within these constraints, metformin should be considered the first-line treatment for all patients with type 2 diabetes, including those with CKD.

SGLT2 inhibitors and GLP-1 RA should be considered for patients with type 2 diabetes and CKD who require another drug added to metformin to attain target A1C or cannot use or tolerate metformin. SGLT2 inhibitors and GLP-1 RA are suggested because they appear to reduce risks of CKD progression, CVD events, and hypoglycemia.

A number of large cardiovascular outcomes trials in patients with type 2 diabetes at high risk for CVD or with existing CVD examined kidney effects as secondary outcomes. These trials include EMPA-REG OUTCOME [BI 10773 (Empagliflozin) Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients], CANVAS (Canagliflozin Cardiovascular Assessment Study), LEADER (Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results), and SUSTAIN-6 (Trial to Evaluate Cardiovascular and Other Long-term Outcomes With Semaglutide in Subjects With Type 2 Diabetes) (42,44,47,51).
Specifically, compared with placebo, empagliflozin reduced the risk of incident or worsening nephropathy (a composite of progression to UACR ≥ 300 mg/g Cr, doubling of serum Cr, ESRD, or death from ESRD) by 39% and the risk of doubling of serum Cr accompanied by eGFR ≤ 45 mL/min/1.73 m2 by 44%; canagliflozin reduced the risk of progression of albuminuria by 27% and the risk of reduction in eGFR, ESRD, or death from ESRD by 40%; liraglutide reduced the risk of new or worsening nephropathy (a composite of persistent macroalbuminuria, doubling of serum Cr, ESRD, or death from ESRD) by 22%; and semaglutide reduced the risk of new or worsening nephropathy (a composite of persistent UACR ≥ 300 mg/g Cr, doubling of serum Cr, or ESRD) by 36% (each $P < 0.01$).

These analyses were limited by evaluation of study populations not selected primarily for CKD and examination of renal effects as secondary outcomes. However, all of these trials included large numbers of people with kidney disease (for example, the baseline prevalence of albuminuria in EMPA-REG OUTCOME was 53%), and some of the cardiovascular outcomes trials (CANVAS and LEADER) were enriched with patients with kidney disease through eligibility criteria based on albuminuria or reduced eGFR. In addition, subgroup analyses of CANVAS and LEADER suggested that the renal benefits of canagliflozin and liraglutide were as great or greater for participants with CKD at baseline (19,46) and in CANVAS were similar for participants with or without atherosclerotic cardiovascular disease (ASCVD) at baseline (52).

Smaller, shorter-term trials also demonstrated favorable renal effects of medications in these classes (53, 53a). Together, these consistent results suggest likely renal benefits of both drug classes.

Several large clinical trials of SGLT2 inhibitors focused on patients with CKD, and assessment of primary renal outcomes are completed or ongoing. Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE), a placebo-controlled trial of canagliflozin among 4,401 adults with type 2 diabetes, UACR ≥ 300 mg/g, and eGFR 30–90 mL/min/1.73 m2, has a primary composite end point of ESRD, doubling of serum Cr, or renal or cardiovascular death (54). It was stopped early due to positive efficacy, with detailed results expected in 2019.

In addition to renal effects, some SGLT2 inhibitors and GLP-1 RA have demonstrated cardiovascular benefits. Namely, in EMPA-REG OUTCOME, CANVAS, and LEADER, empagliflozin, canagliflozin, and liraglutide, respectively, each reduced cardiovascular events, evaluated as primary outcomes, compared with placebo (see Section 10 “Cardiovascular Disease and Risk Management” for further discussion). The glucose-lowering effects of SGLT2 inhibitors are blunted with eGFR ≥ 45 mL/min/1.73 m2 and UACR ≥ 300 mg/g Cr, whereas the cardiovascular benefits of empagliflozin, canagliflozin, and liraglutide were similar among participants with and without kidney disease at baseline (42,44,51,55). Most participants with CKD in these trials also had diagnosed ASCVD at baseline, though approximately 28% of CANVAS participants with CKD did not have diagnosed ASCVD (19).

Important caveats limit the strength of evidence supporting the recommendation of SGLT2 inhibitors and GLP-1 RA in patients with type 2 diabetes and CKD. As noted above, published data address a limited group of CKD patients, mostly with coexisting ASCVD. Renal events have been examined primarily as secondary outcomes in published large trials. Also, adverse event profiles of these agents must be considered. Please refer to Table 9.1 for drug-specific factors, including adverse event information, for these agents. Therefore, additional clinical trials are needed to more rigorously assess the benefits and risks of these classes of drugs among people with CKD.

For patients with type 2 diabetes and CKD, the selection of specific agents may depend on comorbidity and CKD stage. SGLT2 inhibitors may be more useful for patients at high risk of CKD progression (i.e., with albuminuria or a history of documented eGFR loss) (Fig. 9.1) because they appear to have large beneficial effects on CKD incidence. Empagliflozin and canagliflozin are only approved by the FDA for use with eGFR ≥ 45 mL/min/1.73 m2 (though pivotal trials for each included participants with eGFR ≥ 30 mL/min/1.73 m2 and demonstrated benefit in subgroups with low eGFR) (18,19), and dapagliflozin is only approved for eGFR ≥ 60 mL/min/1.73 m2. Some GLP-1 RA may be used with lower eGFR and may have greater benefits for reduction of ASCVD than for CKD progression or heart failure.

Cardiovascular Disease and Blood Pressure

Hypertension is a strong risk factor for the development and progression of CKD (56). Antihypertensive therapy reduces the risk of albuminuria (57–60), and among patients with type 1 or 2 diabetes with established CKD (eGFR < 60 mL/min/1.73 m2 and UACR ≥ 300 mg/g Cr), ACE inhibitor or ARB therapy reduces the risk of progression to ESRD (61–63). Moreover, antihypertensive therapy reduces risks of cardiovascular events (57).

Blood pressure levels $< 140/90$ mmHg are generally recommended to reduce CVD mortality and slow CKD progression among people with diabetes (60). Lower blood pressure targets (e.g., $< 130/80$ mmHg) may be considered for patients based on individual anticipated benefits and risks. Patients with CKD are at increased risk of CKD progression (particularly those with albuminuria) and CVD and therefore may be suitable in some cases for lower blood pressure targets.

ACE inhibitors or ARBs are the preferred first-line agent for blood pressure treatment among patients with diabetes, hypertension, eGFR < 60 mL/min/1.73 m2, and UACR ≥ 300 mg/g Cr because of their proven benefits for prevention of CKD progression (61–64). In general, ACE inhibitors and ARBs are considered to have similar benefits (65,66) and risks. In the setting of lower levels of albuminuria (30–299 mg/g Cr), ACE inhibitor or ARB therapy has been demonstrated to reduce progression to more advanced albuminuria (≥ 300 mg/g Cr) and cardiovascular events but not progression to ESRD (64,67). While ACE inhibitors or ARBs are often prescribed for albuminuria without hypertension, clinical trials have not been performed in this setting to determine whether this improves renal outcomes.

Absent kidney disease, ACE inhibitors or ARBs are useful to control blood pressure but may not be superior to alternative proven classes of antihypertensive therapy, including thiazide-like diuretics and dihydropyridine calcium channel blockers (68). In a trial of people with type 2 diabetes and normal urine albumin excretion, an ARB reduced or suppressed the development of albuminuria but increased the rate of...
cardiovascular events (69). In a trial of people with type 1 diabetes exhibiting neither albuminuria nor hypertension, ACE inhibitors or ARBs did not prevent the development of diabetic glomerulopathy assessed by kidney biopsy (70). Therefore, ACE inhibitors or ARBs are not recommended for patients without hypertension to prevent the development of CKD.

Two clinical trials studied the combinations of ACE inhibitors and ARBs and found no benefits on CVD or CKD, and the drug combination had higher adverse event rates (hyperkalemia and/or AKI) (71,72). Therefore, the combined use of ACE inhibitors and ARBs should be avoided.

Mineralocorticoid receptor antagonists (spironolactone, eplerenone, and finerenone) in combination with ACE inhibitors or ARBs remain an area of great interest. Mineralocorticoid receptor antagonists are effective for management of resistant hypertension, have been shown to reduce albuminuria in short-term studies of CKD, and may have additional cardiovascular benefits (73–75). There has been, however, an increase in hyperkalemic episodes in those on dual therapy, and larger, longer trials with clinical outcomes are needed before recommending such therapy.

Referral to a Nephrologist
Consider referral to a physician experienced in the care of kidney disease when there is uncertainty about the etiology of kidney disease, difficult management issues (anemia, secondary hyperparathyroidism, metabolic bone disease, resistant hypertension, or electrolyte disturbances), or advanced kidney disease (eGFR <30 mL/min/1.73 m²) requiring discussion of renal replacement therapy for ESRD. The threshold for referral may vary depending on the frequency with which a provider encounters patients with diabetes and kidney disease. Consultation with a nephrologist when stage 4 CKD develops (eGFR <30 mL/min/1.73 m²) has been found to reduce cost, improve quality of care, and delay dialysis (76). However, other specialists and providers should also educate their patients about the progressive nature of CKD, the kidney preservation benefits of proactive treatment of blood pressure and blood glucose, and the potential need for renal replacement therapy.

DIABETIC RETINOPATHY

Recommendations

11.13 Optimize glycemic control to reduce the risk or slow the progression of diabetic retinopathy. A

11.14 Optimize blood pressure and serum lipid control to reduce the risk or slow the progression of diabetic retinopathy. A

Screening

11.15 Adults with type 1 diabetes should have an initial dilated and comprehensive eye examination by an ophthalmologist or optometrist within 5 years after the onset of diabetes. B

11.16 Patients with type 2 diabetes should have an initial dilated and comprehensive eye examination by an ophthalmologist or optometrist at the time of the diabetes diagnosis. B

11.17 If there is no evidence of retinopathy for one or more annual eye exam and glycemia is well controlled, then exams every 1–2 years may be considered. If any level of diabetic retinopathy is present, subsequent dilated retinal examinations should be repeated at least annually by an ophthalmologist or optometrist. B

11.18 Telemedicine programs that use validated retinal photography with remote reading by an ophthalmologist or optometrist and timely referral for a comprehensive eye examination when indicated can be an appropriate screening strategy for diabetic retinopathy. B

11.19 Women with preexisting type 1 or type 2 diabetes who are planning pregnancy or who are pregnant should be counseled on the risk of development and/or progression of diabetic retinopathy. B

11.20 Eye examinations should occur before pregnancy or in the first trimester in patients with pre-existing type 1 or type 2 diabetes, and then patients should be monitored every trimester and for 1-year postpartum as indicated by the degree of retinopathy. B

Treatment

11.21 Promptly refer patients with any level of macular edema, severe nonproliferative diabetic retinopathy (a precursor of proliferative diabetic retinopathy), or any proliferative diabetic retinopathy to an ophthalmologist who is knowledgeable and experienced in the management of diabetic retinopathy. A

11.22 The traditional standard treatment, panretinal laser photocoagulation therapy, is indicated to reduce the risk of vision loss in patients with high-risk proliferative diabetic retinopathy and, in some cases, severe nonproliferative diabetic retinopathy. A

11.23 Intravitreal injections of anti–vascular endothelial growth factor ranibizumab are not inferior to traditional panretinal laser photocoagulation and are also indicated to reduce the risk of vision loss in patients with proliferative diabetic retinopathy. A

11.24 Intravitreal injections of anti–vascular endothelial growth factor are indicated for central-involved diabetic macular edema, which occurs beneath the foveal center and may threaten reading vision. A

11.25 The presence of retinopathy is not a contraindication to aspirin therapy for cardioprotection, as aspirin does not increase the risk of retinal hemorrhage. A

Diabetic retinopathy is a highly specific vascular complication of both type 1 and type 2 diabetes, with prevalence strongly related to both the duration of diabetes and the level of glycemic control (77). Diabetic retinopathy is the most frequent cause of new cases of blindness among adults aged 20–74 years in developed countries. Glaucoma, cataracts, and other disorders of the eye occur earlier and more frequently in people with diabetes.
In addition to diabetes duration, factors that increase the risk of, or are associated with, retinopathy include chronic hyperglycemia (78), nephropathy (79), hypertension (80), and dyslipidemia (81). Intensive diabetes management with the goal of achieving near-normoglycemia has been shown in large prospective randomized studies to prevent and/or delay the onset and progression of diabetic retinopathy and potentially improve patient-reported visual function (30,82–84).

Several case series and a controlled prospective study suggest that pregnancy in patients with type 1 diabetes may aggravate retinopathy and threaten vision, especially when glycemic control is poor at the time of conception (85,86). Laser photoacoagulation surgery can minimize the risk of vision loss (86).

Screening
The preventive effects of therapy and the fact that patients with proliferative diabetic retinopathy (PDR) or macular edema may be asymptomatic provide strong support for screening to detect diabetic retinopathy.

An ophthalmologist or optometrist who is knowledgeable and experienced in diagnosing diabetic retinopathy should perform the examinations. Youth with type 1 or type 2 diabetes are also at risk for complications and need to be screened for diabetic retinopathy (87). If diabetic retinopathy is present, prompt referral to an ophthalmologist is recommended. Subsequent examinations for patients with type 1 or type 2 diabetes are generally repeated annually for patients with minimal to no retinopathy. Exams every 1–2 years may be cost-effective after one or more normal eye exams, and in a population with well-controlled type 2 diabetes, there was essentially no risk of development of significant retinopathy with a 3-year interval after a normal examination (88). Less frequent intervals have been found in simulated modeling to be potentially effective in screening for diabetic retinopathy in patients without diabetic retinopathy (89). More frequent examinations by the ophthalmologist will be required if retinopathy is progressing.

Retinal photography with remote reading by experts has great potential to provide screening services in areas where qualified eye care professionals are not readily available (82,83). High-quality fundus photographs can detect most clinically significant diabetic retinopathy. Interpretation of the images should be performed by a trained eye care provider. Retinal photography may also enhance efficiency and reduce costs when the expertise of ophthalmologists can be used for more complex examinations and for therapy (90,91). In-person exams are still necessary when the retinal photos are of unacceptable quality and for follow-up if abnormalities are detected. Retinal photos are not a substitute for comprehensive eye exams, which should be performed at least initially and at intervals thereafter as recommended by an eye care professional. Results of eye examinations should be documented and transmitted to the referring health care professional.

Type 1 Diabetes
Because retinopathy is estimated to take at least 5 years to develop after the onset of hyperglycemia, patients with type 1 diabetes should have an initial dilated and comprehensive eye examination within 5 years after the diagnosis of diabetes (92).

Type 2 Diabetes
Patients with type 2 diabetes who may have had years of undiagnosed diabetes and have a significant risk of prevalent diabetic retinopathy at the time of diagnosis should have an initial dilated and comprehensive eye examination at the time of diagnosis.

Pregnancy
Pregnancy is associated with a rapid progression of diabetic retinopathy (93,94). Women with preexisting type 1 or type 2 diabetes who are planning pregnancy or who have become pregnant should be counseled on the risk of development and/or progression of diabetic retinopathy. In addition, rapid implementation of intensive glycemic management in the setting of retinopathy is associated with early worsening of retinopathy (86). Women who develop gestational diabetes mellitus do not require eye examinations during pregnancy and do not appear to be at increased risk of developing diabetic retinopathy during pregnancy (95).

Treatment
Two of the main motivations for screening for diabetic retinopathy are to prevent loss of vision and to intervene with treatment when vision loss can be prevented or reversed.

Photocoagulation Surgery
Two large trials, the Diabetic Retinopathy Study (DRS) in patients with PDR and the Early Treatment Diabetic Retinopathy Study (ETDRS) in patients with macular edema, provide the strongest support for the therapeutic benefits of photocoagulation surgery. The DRS (96) showed in 1978 that panretinal photocoagulation surgery reduced the risk of severe vision loss from PDR from 15.9% in untreated eyes to 6.4% in treated eyes with the greatest benefit ratio in those with more advanced baseline disease (disc neovascularization or vitreous hemorrhage). In 1985, the ETDRS also verified the benefits of panretinal photocoagulation for high-risk PDR and in older-onset patients with severe nonproliferative diabetic retinopathy or less-than-high-risk PDR. Panretinal laser photocoagulation is still commonly used to manage complications of diabetic retinopathy that involve retinal neovascularization and its complications.

Anti–Vascular Endothelial Growth Factor Treatment
Recent data from the Diabetic Retinopathy Clinical Research Network and others demonstrate that intravitreal injections of anti–vascular endothelial growth factor (anti-VEGF) agent, specifically ranibizumab, resulted in visual acuity outcomes that were not inferior to those observed in patients treated with panretinal laser at 2 years of follow-up (97). In addition, it was observed that patients treated with ranibizumab tended to have less peripheral visual field loss, fewer vitrectomy surgeries for secondary complications from their proliferative disease, and a lower risk of developing diabetic macular edema. However, a potential drawback in using anti-VEGF therapy to manage proliferative disease is that patients were required to have a greater number of visits and received a greater number of treatments than is typically required for management with panretinal laser, which may not be optimal for some patients. Other emerging therapies for retinopathy that may use sustained intravitreal delivery of pharmacologic agents are currently under investigation. The FDA approved ranibizumab for the treatment of diabetic retinopathy in 2017.
While the ETDRS (98) established the benefit of focal laser photoocoagulation surgery in eyes with clinically significant macular edema (defined as retinal edema located at or within 500 μm of the center of the macula), current data from well-designed clinical trials demonstrate that intravitreal anti-VEGF agents provide a more effective treatment regimen for central-involved diabetic macular edema than monotherapy or even combination therapy with laser (99–101). There are currently three anti-VEGF agents commonly used to treat eyes with central-involved diabetic macular edema—bevacizumab, ranibizumab, and aflibercept (77).

In both the DRS and the ETDRS, laser photoocoagulation surgery was beneficial in reducing the risk of further visual loss in affected patients but generally not beneficial in reversing already diminished acuity. Anti-VEGF therapy improves vision and has replaced the need for laser photoocoagulation in the vast majority of patients with diabetic macular edema (102). Most patients require near-monthly administration of intravitreal therapy with anti-VEGF agents during the first 12 months of treatment, with fewer injections needed in subsequent years to maintain remission from central-involved diabetic macular edema.

Adjunctive Therapy
Lowering blood pressure has been shown to decrease retinopathy progression, although tight targets (systolic blood pressure <120 mmHg) do not impart additional benefit (83). ACE inhibitors and ARBs are both effective treatments in diabetic retinopathy (103). In patients with dyslipidemia, retinopathy progression may be slowed by the addition of fenofibrate, particularly with very mild nonproliferative diabetic retinopathy at baseline (81,104).

NEUROPATHY

Recommendations

Screening

11.26 All patients should be assessed for diabetic peripheral neuropathy starting at diagnosis of type 2 diabetes and 5 years after the diagnosis of type 1 diabetes and at least annually thereafter. B

11.27 Assessment for distal symmetric polyneuropathy should include a careful history and assessment of either temperature or pinprick sensation (small-fiber function) and vibration sensation using a 128-Hz tuning fork (for large-fiber function). All patients should have annual 10-g monofilament testing to identify feet at risk for ulceration and amputation. B

11.28 Symptoms and signs of autonomic neuropathy should be assessed in patients with microvascular complications. E

Treatment

11.29 Optimize glucose control to prevent or delay the development of neuropathy in patients with type 1 diabetes A and to slow the progression of neuropathy in patients with type 2 diabetes. B

11.30 Assess and treat patients to reduce pain related to diabetic peripheral neuropathy B and symptoms of autonomic neuropathy and to improve quality of life. E

11.31 Gabapentin, duloxetine, or pregabalin are recommended as initial pharmacologic treatments for neuropathic pain in diabetes. A

The diabetic neuropathies are a heterogeneous group of disorders with diverse clinical manifestations. The early recognition and appropriate management of neuropathy in the patient with diabetes is important.

1. Diabetic neuropathy is a diagnosis of exclusion. Nondiabetic neuropathies may be present in patients with diabetes and may be treatable.

3. Up to 50% of diabetic peripheral neuropathy (DPN) may be asymptomatic. If not recognized and if preventable foot care is not implemented, patients are at risk for injuries to their insensitive feet.

4. Recognition and treatment of autonomic neuropathy may improve symptoms, reduce sequelae, and improve quality of life.

Specific treatment for the underlying nerve damage, other than improved glycemic control, is currently not available. Glycemic control can effectively prevent DPN and cardiac autonomic neuropathy (CAN) in type 1 diabetes (105,106) and may modestly slow their progression in type 2 diabetes (32), but does not reverse neuronal loss. Therapeutic strategies (pharmacologic and nonpharmacologic) for the relief of painful DPN and symptoms of autonomic neuropathy can potentially reduce pain (107) and improve quality of life.

Diagnosis

Diabetic Peripheral Neuropathy

Patients with type 1 diabetes for 5 or more years and all patients with type 2 diabetes should be assessed annually for DPN using the medical history and simple clinical tests. Symptoms vary according to the class of sensory fibers involved. The most common early symptoms are induced by the involvement of small fibers and include pain and dysesthesia (unpleasant sensations of burning and tingling). The involvement of large fibers may cause numbness and loss of protective sensation (LOPS). LOPS indicates the presence of distal sensorimotor polyneuropathy and is a risk factor for diabetic foot ulceration. The following clinical tests may be used to assess small- and large-fiber function and protective sensation:

1. Small-fiber function: pinprick and temperature sensation

2. Large-fiber function: vibration perception and 10-g monofilament

3. Protective sensation: 10-g monofilament

These tests not only screen for the presence of dysfunction but also predict future risk of complications. Electrophysiological testing or referral to a neurologist is rarely needed, except in situations where the clinical features are atypical or the diagnosis is unclear.

In all patients with diabetes and DPN, causes of neuropathy other than diabetes should be considered, including toxins (e.g., alcohol), neurotoxic medications (e.g., chemotherapy), vitamin B12 deficiency, hypothyroidism, renal disease, malignancies (e.g., multiple myeloma, bronchogenic carcinoma), infections (e.g., HIV), chronic inflammatory demyelinating neuropathy, inherited
neuropathies, and vasculitis (108). See the American Diabetes Association (ADA) position statement “Diabetic Neuropathy” for more details (107).

Diabetic Autonomic Neuropathy
The symptoms and signs of autonomic neuropathy should be elicited carefully during the history and physical examination. Major clinical manifestations of diabetic autonomic neuropathy include hypoglycemia unawareness, resting tachycardia, orthostatic hypotension, gastroparesis, constipation, diarrhea, fecal incontinence, erectile dysfunction, neurogenic bladder, and sudomotor dysfunction with either increased or decreased sweating.

Cardiac Autonomic Neuropathy. CAN is associated with mortality independently of other cardiovascular risk factors (109,110). In its early stages, CAN may be completely asymptomatic and detected only by decreased heart rate variability with deep breathing. Advanced disease may be associated with resting tachycardia (>100 bpm) and orthostatic hypotension (a fall in systolic or diastolic blood pressure by >20 mmHg or >10 mmHg, respectively, upon standing without an appropriate increase in heart rate). CAN treatment is generally focused on alleviating symptoms.

Gastrointestinal Neuropathies. Gastrointestinal neuropathies may involve any portion of the gastrointestinal tract with manifestations including esophageal dysmotility, gastroparesis, constipation, diarrhea, and fecal incontinence. Gastroparesis should be suspected in individuals with erratic glycemic control or with upper gastrointestinal symptoms without another identified cause. Exclusion of organic causes of gastric outlet obstruction or peptic ulcer disease (with esophagogastroduodenoscopy or a barium study of the stomach) is needed before considering a diagnosis of or specialized testing for gastroparesis. The diagnostic gold standard for gastroparesis is the measurement of gastric emptying with scintigraphy of digestible solids at 15-min intervals for 4 h after food intake. The use of 13C octanoic acid breath test is emerging as a viable alternative.

Genitourinary Disturbances. Diabetic autonomic neuropathy may also cause genitourinary disturbances, including sexual dysfunction and bladder dysfunction. In men, diabetic autonomic neuropathy may cause erectile dysfunction and/or retrograde ejaculation (107). Female sexual dysfunction occurs more frequently in those with diabetes and presents as decreased sexual desire, increased pain during intercourse, decreased sexual arousal, and inadequate lubrication (111). Lower urinary tract symptoms manifest as urinary incontinence and bladder dysfunction (nocturia, frequent urination, urination urgency, and weak urinary stream). Evaluation of bladder function should be performed for individuals with diabetes who have recurrent urinary tract infections, pyelonephritis, incontinence, or a palpable bladder.

Treatment

Glycemic Control
Near-normal glycemic control, implemented early in the course of diabetes, has been shown to effectively delay or prevent the development of DPN and CAN in patients with type 1 diabetes (112–115). Although the evidence for the benefit of near-normal glycemic control is not as strong for type 2 diabetes, some studies have demonstrated a modest slowing of progression without reversal of neuronal loss (32,116). Specific glucose-lowering strategies may have different effects. In a post hoc analysis, participants, particularly men, in the Bypass Angioplasty Revascularization Investigation in Type 2 Diabetes (BARI 2D) trial treated with insulin sensitizers had a lower incidence of distal symmetric polyneuropathy over 4 years than those treated with insulin/sulfonylurea (117).

Neuropathic Pain
Neuropathic pain can be severe and can impact quality of life, limit mobility, and contribute to depression and social dysfunction (118). No compelling evidence exists in support of glycemic control or lifestyle management as therapies for neuropathic pain in diabetes or prediabetes, which leaves only pharmaceutical interventions (119).

Pregabalin and duloxetine have received regulatory approval by the FDA, Health Canada, and the European Medicines Agency for the treatment of neuropathic pain in diabetes. The opioid tapentadol has regulatory approval in the U.S. and Canada, but the evidence of its use is weaker (120). Comparative effectiveness studies and trials that include quality-of-life outcomes are rare, so treatment decisions must consider each patient’s presentation and comorbidities and often follow a trial-and-error approach. Given the range of partially effective treatment options, a tailored and stepwise pharmacologic strategy with careful attention to relative symptom improvement, medication adherence, and medication side effects is recommended to achieve pain reduction and improve quality of life (121–123).

Pregabalin, a calcium channel $\alpha_{2-\delta}$ subunit ligand, is the most extensively studied drug for DPN. The majority of studies testing pregabalin have reported favorable effects on the proportion of participants with at least 30–50% improvement in pain (120,122,124–127). However, not all trials with pregabalin have been positive (120,122,128,129), especially when treating patients with advanced refractory DPN (126). Adverse effects may be more severe in older patients (130) and may be attenuated by lower starting doses and more gradual titration. The related drug, *gabapentin,* has also shown efficacy for pain control in diabetic neuropathy and may be less expensive, although it is not FDA approved for this indication (131).

Duloxetine is a selective norepinephrine and serotonin reuptake inhibitor. Doses of 60 and 120 mg/day showed efficacy in the treatment of pain associated with DPN in multicenter randomized trials, although some of these had high drop-out rates (120,122,127,129). Duloxetine also appeared to improve neuropathy-related quality of life (132). In longer-term studies, a small increase in A1C was reported in people with diabetes treated with duloxetine compared with placebo (133). Adverse events may be more severe in older people but may be attenuated with lower doses and slower titrations of duloxetine.

Tapentadol is a centrally acting opioid analgesic that exerts its analgesic effects through both μ-opioid receptor agonism and noradrenaline reuptake inhibition. Extended-release tapentadol was approved by the FDA for the treatment of neuropathic pain associated with diabetes based on data from two multicenter clinical trials in which participants titrated to an optimal dose of tapentadol.
were randomly assigned to continue that dose or switch to placebo (134,135). However, both used a design enriched for patients who responded to tapentadol and therefore their results are not generalizable. A recent systematic review and meta-analysis by the Special Interest Group on Neuropathic Pain of the International Association for the Study of Pain found the evidence supporting the effectiveness of tapentadol in reducing neuropathic pain to be inconclusive (120). Therefore, given the high risk for addiction and safety concerns compared with the relatively modest pain reduction, the use of extended-release tapentadol is not generally recommended as a first- or second-line therapy. The use of any opioids for management of chronic neuropathic pain carries the risk of addiction and should be avoided.

Tricyclic antidepressants, venlafaxine, carbamazepine, and topical capsaicin, although not approved for the treatment of painful DPN, may be effective and considered for the treatment of painful DPN (107,120,122).

Orthostatic Hypotension

Treating orthostatic hypotension is challenging. The therapeutic goal is to minimize postural symptoms rather than to restore normotension. Most patients require both nonpharmacologic measures (e.g., ensuring adequate salt intake, avoiding medications that aggravate hypotension, or using compressive garments over the legs and abdomen) and pharmacologic measures. Physical activity and exercise should be encouraged to avoid deconditioning, which is known to exacerbate orthostatic intolerance, and volume repletion with fluids and salt is critical. Midodrine and droxidopa are approved by the FDA for the treatment of orthostatic hypotension.

Gastroparesis

Treatment for diabetic gastroparesis may be very challenging. A low-fiber, low-fat eating plan provided in small frequent meals with a greater proportion of liquid calories may be useful (136–138). In addition, foods with small particle size may improve key symptoms (139). withdrawing drugs with adverse effects on gastrointestinal motility including opioids, anticholinergics, tricyclic antidepressants, GLP-1 RA, pramlintide, and possibly dipeptidyl peptidase 4 inhibitors may also improve intestinal motility (136,140). In cases of severe gastroparesis, pharmacologic interventions are needed. Only metoclopramide, a prokinetic agent, is approved by the FDA for the treatment of gastroparesis. However, the level of evidence regarding the benefits of metoclopramide for the management of gastroparesis is weak, and given the risk for serious adverse effects (extrapyramidal signs such as acute dystonic reactions, drug-induced parkinsonism, akathisia, and tardive dyskinesia), its use in the treatment of gastroparesis beyond 12 weeks is no longer recommended by the FDA or the European Medicines Agency. It should be reserved for severe cases that are unresponsive to other therapies (140). Other treatment options include domperidone (available outside of the U.S.) and erythromycin, which is only effective for short-term use due to tachyphyaxis (141,142). Gastric electrical stimulation using a surgically implantable device has received approval from the FDA, although its efficacy is variable and use is limited to patients with severe symptoms that are refractory to other treatments (143).

Erectile Dysfunction

In addition to treatment of hypogonadism if present, treatments for erectile dysfunction may include phosphodiesterase type 5 inhibitors, intracorporeal or intraurethral prostaglandins, vacuum devices, or penile prostheses. As with DPN treatments, these interventions do not change the underlying pathology and natural history of the disease process but may improve the patient’s quality of life.

FOOT CARE

Recommendations

11.32 Perform a comprehensive foot evaluation at least annually to identify risk factors for ulcers and amputations.

11.33 Patients with evidence of sensory loss or prior ulceration or amputation should have their feet inspected at every visit.

11.34 Obtain a prior history of ulceration, amputation, Charcot foot, angioplasty or vascular surgery, cigarette smoking, retinopathy, and renal disease and assess current symptoms of neuropathy (pain, burning, numbness) and vascular disease (leg fatique, claudication).

11.35 The examination should include inspection of the skin, assessment of foot deformities, neurological assessment (10-g monofilament testing with at least one other assessment: pinprick, temperature, vibration), and vascular assessment including pulses in the legs and feet.

11.36 Patients with symptoms of claudication or decreased or absent pedal pulses should be referred for ankle-brachial index and for further vascular assessment as appropriate.

11.37 A multidisciplinary approach is recommended for individuals with foot ulcers and high-risk feet (e.g., dialysis patients and those with Charcot foot or prior ulcers or amputation).

11.38 Refer patients who smoke or who have histories of prior lower-extremity complications, loss of protective sensation, structural abnormalities, or peripheral arterial disease to foot care specialists for ongoing preventive care and lifelong surveillance.

11.39 Provide general preventive foot self-care education to all patients with diabetes.

11.40 The use of specialized therapeutic footwear is recommended for high-risk patients with diabetes including those with severe neuropathy, foot deformities, or history of amputation.

Foot ulcers and amputation, which are consequences of diabetic neuropathy and/or peripheral arterial disease (PAD), are common and represent major causes of morbidity and mortality in people with diabetes. Early recognition and treatment of patients with diabetes and feet at risk for ulcers and amputations can delay or prevent adverse outcomes.

The risk of ulcers or amputations is increased in people who have the following risk factors:
Clinicians are encouraged to review ADA screening recommendations for further details and practical descriptions of how to perform components of the comprehensive foot examination (144).

Evaluation for Loss of Protective Sensation
All adults with diabetes should undergo a comprehensive foot evaluation at least annually. Detailed foot assessments may occur more frequently in patients with histories of ulcers or amputations, foot deformities, insensitive feet, and PAD (145). To assess risk, clinicians should ask about history of foot ulcers or amputation, neuropathic and peripheral vascular symptoms, impaired vision, renal disease, tobacco use, and foot care practices. A general inspection of skin integrity and musculoskeletal deformities should be performed. Vascular assessment should include inspection and palpation of pedal pulses.

The neurological exam performed as part of the foot examination is designed to identify LOPS rather than early neuropathy. The 10-g monofilament is the most useful test to diagnose LOPS. Ideally, the 10-g monofilament test should be performed with at least one other assessment (pinprick, temperature or vibration sensation using a 128-Hz tuning fork, or ankle reflexes). Absent monofilament sensation suggests LOPS, while at least two normal tests (and no abnormal test) rules out LOPS.

Evaluation for Peripheral Arterial Disease
Initial screening for PAD should include a history of decreased walking speed, leg fatigue, claudication, and an assessment of the pedal pulses. Ankle-brachial index testing should be performed in patients with symptoms or signs of PAD.

Patient Education
All patients with diabetes and particularly those with high-risk foot conditions (history of ulcer or amputation, deformity, LOPS, or PAD) and their families should be provided general education about risk factors and appropriate management (146). Patients at risk should understand the implications of foot deformities, LOPS, and PAD; the proper care of the foot, including nail and skin care; and the importance of foot monitoring on a daily basis. Patients with LOPS should be educated on ways to substitute other sensory modalities (palpation or visual inspection using an unbreakable mirror) for surveillance of early foot problems.

The selection of appropriate footwear and footwear behaviors at home should also be discussed. Patients’ understanding of these issues and their physical ability to conduct proper foot surveillance and care should be assessed. Patients with visual difficulties, physical constraints preventing movement, or cognitive problems that impair their ability to assess the condition of the foot and to institute appropriate responses will need other people, such as family members, to assist with their care.

Treatment
People with neuropathy or evidence of increased plantar pressures (e.g., erythema, warmth, or calluses) may be adequately managed with well-fitted walking shoes or athletic shoes that cushion the feet and redistribute pressure. People with bony deformities (e.g., hammertoes, prominent metatarsal heads, bunions) may need extra wide or deep shoes. People with bony deformities, including Charcot foot, who cannot be accommodated with commercial therapeutic footwear, will require custom-molded shoes. Special consideration and a thorough workup should be performed when patients with neuropathy present with the acute onset of a red, hot, swollen foot or ankle, and Charcot neuroarthropathy should be excluded. Early diagnosis and treatment of Charcot neuroarthropathy is the best way to prevent deformities that increase the risk of ulceration and amputation. The routine prescription of therapeutic footwear is not generally recommended. However, patients should be provided adequate information to aid in selection of appropriate footwear. General footwear recommendations include a broad and square toe box, laces with three or four eyes per side, padded tongue, quality lightweight materials, and sufficient size to accommodate a cushioned insole. Use of custom therapeutic footwear can help reduce the risk of future foot ulcers in high-risk patients (145,147).

Most diabetic foot infections are polymicrobial, with aerobic gram-positive cocci. Staphylococci and streptococci are the most common causative organisms. Wounds without evidence of soft tissue or bone infection do not require antibiotic therapy. Empiric antibiotic therapy can be narrowly targeted at gram-positive cocci in many patients with acute infections, but those at risk for infection with antibiotic-resistant organisms or with chronic, previously treated, or severe infections require broader-spectrum regimens and should be referred to specialized care centers (148). Foot ulcers and wound care may require care by a podiatrist, orthopedic or vascular surgeon, or rehabilitation specialist experienced in the management of individuals with diabetes (148).

Hyperbaric oxygen therapy (HBOT) in patients with diabetic foot ulcers has mixed evidence supporting its use as an adjunctive treatment to enhance wound healing and prevent amputation (149–151). In a relatively high-quality double-blind study of patients with chronic diabetic foot ulcers, hyperbaric oxygen as an adjunctive therapy resulted in significantly more complete healing of the index ulcer in patients treated with HBOT compared with placebo at 1 year of follow-up (152). However, multiple subsequently published studies have either failed to demonstrate a benefit of HBOT or have been relatively small with potential flaws in study design (150). A well-conducted randomized controlled study performed in 103 patients found that HBOT did not reduce the indication for amputation or facilitate wound healing compared with comprehensive wound care in patients with chronic diabetic foot ulcers (153). A systematic review by the International Working Group on the Diabetic Foot of interventions to improve the healing of chronic diabetic foot ulcers concluded that analysis of the evidence continues to present methodological challenges as randomized controlled studies remain few, with a majority being of poor quality (150). HBOT also does not seem to have a significant effect on health-related quality
of life in patients with diabetic foot ulcers (154,155). A recent review concluded that the evidence to date remains inconclusive regarding the clinical and cost-effectiveness of HBOT as an adjunctive treatment to standard wound care for diabetic foot ulcers (156). Results from the recently published Dutch DAMOCLES (Does Applying More Oxygen Cure Lower Extremity Sores?) trial demonstrated that HBOT in patients with diabetes and ischemic wounds did not significantly improve complete wound healing and limb salvage (157). The Centers for Medicare & Medicaid Services currently covers HBOT for diabetic foot ulcers that have failed a standard course of wound therapy when there are no measurable signs of healing for at least 30 consecutive days (158).

HBOT should be a topic of shared decision making before treatment is considered for selected patients with diabetic foot ulcers (158).

References

a systematic review and meta-analysis. Lancet Neurol 2015;14:162–173
Association of Neuromuscular and Electrodiagnostic Medicine; American Academy of Physical Med-
icine and Rehabilitation. Evidence-based guide-
line: treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabili-
tation. [published correction appears in Neurology 2011;77:603]. Neurology 2011;76:1758–1765
649
124. Freeman R, Durso-Decruz E, Emerson B. Efficacy, safety, and tolerability of pregabalin treatment for painful diabetic peripheral neuropathy: findings from seven randomized, controlled trials across a range of doses. Diabetes Care 2008;31:1448–1454
126. Raskin P, Huffman C, Toth C, et al. Pre-

gabalin in patients with inadequately treated painful diabetic peripheral neuropathy: a ran-
379–390
2020

al neuropathic pain. BMC Neurol 2009;9:6
130. Dworin RH, Jensen MP, Gammanaiton AR, Olayey DO, Galer BS. Symptom profiles differ in patients with neuropathic versus non-neu-
ropathic pain. J Pain 2007;8:118–126
133. Hardy T, Sachson R, Shen S, Armbruster M, Boulton AIM. Does treatment with duloxetine for neuropathic pain impact glycemic control? Di-
abetes Care 2007;30:21–26
134. Schwartz S, Etropolos M, Shapiro DY, et al. Safety and efficacy of tapentadol ER in patients with painful diabetic peripheral neuropathy: results of a randomized-withdrawal, placebo-control-
2309
136. Camilleri M, Parkman HP, Shafi MA, Abell TL, Gerson L; American College of Gastroenter-
ology. Clinical guideline: management of gastro-
137. Parrish CR, Pastors JK. Nutritional manage-
ment of gastroparesis in people with diabetes. Diabetes Spectr 2017;30:156
138. Freeman R, Durso-Decruz E, Emir B. Ef

cacy, safety, and tolerability of pregabalin treat-
140. Umphreys GE, Ed. Therapy for Diabetes Mellitus and Related Disorders. 6th ed. Alex-
andria, VA, American Diabetes Association, 2014
141. Sugumar A, Singh A, Pasricha PJ. A system-
atic review of the efficacy of dopaminederone for the treatment of diabetic gastroparesis. Clin Gastro-
enterol Hepatol 2010;8:726–733
142. Maganti K, Onyemere K, Jones MP. Oral erythromycin and symptomatic relief of gastro-
143. McCallum RW, Snape W, Brody F, Wo J, Parkman HP, Nowak T. Gastric electrical stimula-
144. Boulton AIM, Armstrong DG, Albert SF, et al.; American Diabetes Association; American Association of Clinical Endocrinologists. Compre-
ensive foot examination and risk assessment: a report of the Task Force of the Foot Care Interest Group of the American Diabetes Asso-
ciation, with endorsement by the American Association of Clinical Endocrinologists. Diabetes Care 2008;31:1679–1685
147. Rizzo L, Tedeschi A, Fallani E, et al. Custom-
made orthoses and shoes in a structured follow-up program reduces the incidence of neuropathic ulcers in high-risk diabetic foot patients. Int J Low Extrem Wounds 2012;11:59–
64
148. Lipsky BA, Berendt AR, Cornia PB, et al.; Infectious Diseases Society of America. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treat-
150. Game FJ, Apelqvist J, Attinger C, et al.; Interna-
153. Fedorko L, Bowen JM, Jones W, et al. Hyperbaric oxygen therapy does not reduce indi-
cations for amputation in patients with di-
abetes with nonhealing ulcers of the lower limb: a prospective, double-blind, randomized con-
trolled clinical trial. Diabetes Care 2016;39:
392–399
154. Li G, Hopkins RB, Levine MAH, et al. Re-

erelationship between hyperbaric oxygen therapy and quality of life in participants with chronic diabetic foot ulcers: data from a randomized controlled trial. Acta Diabetol 2017;54:823–
831
205–247
12. Older Adults: *Standards of Medical Care in Diabetes*—2019

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

Recommendations

12.1 Consider the assessment of medical, psychological, functional (self-management abilities), and social geriatric domains in older adults to provide a framework to determine targets and therapeutic approaches for diabetes management. C

12.2 Screening for geriatric syndromes may be appropriate in older adults experiencing limitations in their basic and instrumental activities of daily living as they may affect diabetes self-management and be related to health-related quality of life. C

Diabetes is an important health condition for the aging population; approximately one-quarter of people over the age of 65 years have diabetes and one-half of older adults have prediabetes (1), and this proportion is expected to increase rapidly in the coming decades. Older individuals with diabetes have higher rates of premature death, functional disability, accelerated muscle loss, and coexisting illnesses, such as hypertension, coronary heart disease, and stroke, than those without diabetes. Older adults with diabetes also are at greater risk than other older adults for several common geriatric syndromes, such as polypharmacy, cognitive impairment, urinary incontinence, injurious falls, and persistent pain. These conditions may impact older adults’ diabetes self-management abilities (2). See Section 4 “Comprehensive Medical Evaluation and Assessment of Comorbidities” for comorbidities to consider when caring for older adult patients with diabetes.

Screening for diabetes complications in older adults should be individualized and periodically revisited, as the results of screening tests may impact therapeutic approaches and targets (2–4). Older adults are at increased risk for depression and should therefore be screened and treated accordingly (5). Diabetes management may require assessment of medical, psychological, functional, and social domains. This may provide a framework to determine targets and therapeutic approaches, including whether referral for diabetes self-management education is appropriate (when complicating factors arise or when transitions in care occur) or whether the current
regimen is too complex for the patient’s self-management ability. Particular attention should be paid to complications that can develop over short periods of time and/or would significantly impair functional status, such as visual and lower-extremity complications. Please refer to the American Diabetes Association (ADA) consensus report “Diabetes in Older Adults” for details (2).

NEUROCOGNITIVE FUNCTION

Recommendation

12.3 Screening for early detection of mild cognitive impairment or dementia and depression is indicated for adults 65 years of age or older at the initial visit and annually as appropriate. B

Older adults with diabetes are at higher risk of cognitive decline and institutionalization (6,7). The presentation of cognitive impairment ranges from subtle executive dysfunction to memory loss and overt dementia. People with diabetes have higher incidences of all-cause dementia, Alzheimer disease, and vascular dementia than people with normal glucose tolerance (8). The effects of hyperglycemia and hyperinsulinemia on the brain are areas of intense research. Clinical trials of specific interventions—including cholinesterase inhibitors and glutamatergic antagonists—have not shown positive therapeutic benefit in maintaining or significantly improving cognitive function or in preventing cognitive decline (9). Pilot studies in patients with mild cognitive impairment evaluating the potential benefits of intranasal insulin therapy and metformin therapy provide insights for future clinical trials and mechanistic studies (10–12).

The presence of cognitive impairment can make it challenging for clinicians to help their patients reach individualized glycemic, blood pressure, and lipid targets. Cognitive dysfunction makes it difficult for patients to perform complex self-care tasks, such as glucose monitoring and adjusting insulin doses. It also hinders their ability to appropriately maintain the timing and content of diet. When clinicians are managing patients with cognitive dysfunction, it is critical to simplify drug regimens and to involve caregivers in all aspects of care.

Poor glycemic control is associated with a decline in cognitive function (13), and longer duration of diabetes is associated with worsening cognitive function. There are ongoing studies evaluating whether preventing or delaying diabetes onset may help to maintain cognitive function in older adults. However, studies examining the effects of intensive glycemic and blood pressure control to achieve specific targets have not demonstrated a reduction in brain function decline (14,15).

Older adults with diabetes should be carefully screened and monitored for cognitive impairment (2) (see Table 4.1 for depression and cognitive screening recommendations). Several organizations have released simple assessment tools, such as the Mini-Mental State Examination (16) and the Montreal Cognitive Assessment (17), which may help to identify patients requiring neuropsychological evaluation, particularly those in whom dementia is suspected (i.e., experiencing memory loss and decline in their basic and instrumental activities of daily living). Annual screening for cognitive impairment is indicated for adults 65 years of age or older for early detection of mild cognitive impairment or dementia (4,18). Screening for cognitive impairment should additionally be considered in the presence of a significant decline in clinical status, inclusive of increased difficulty with self-care activities, such as errors in calculating insulin dose, difficulty counting carbohydrates, skipping meals, skipping insulin doses, and difficulty recognizing, preventing, or treating hypoglycemia. People who screen positive for cognitive impairment should receive diagnostic assessment as appropriate, including referral to a behavioral health provider for formal cognitive/psychological evaluation (19).

HyPOGLYCEMIA

Recommendation

12.4 Hypoglycemia should be avoided in older adults with diabetes. It should be assessed and managed by adjusting glycemic targets and pharmacologic interventions. B

Older adults are at higher risk of hypoglycemia for many reasons, including insulin deficiency necessitating insulin therapy and progressive renal insufficiency. In addition, older adults tend to have higher rates of unidentified cognitive deficits, causing difficulty in complex self-care activities (e.g., glucose monitoring, adjusting insulin doses, etc.). These cognitive deficits have been associated with increased risk of hypoglycemia, and, conversely, severe hypoglycemia has been linked to increased risk of dementia (20). Therefore, it is important to routinely screen older adults for cognitive dysfunction and discuss findings with the patients and their caregivers.

Hypoglycemic events should be dually monitored and avoided, whereas glycemic targets and pharmacologic interventions may need to be adjusted to accommodate for the changing needs of the older adult (2). Of note, it is important to prevent hypoglycemia to reduce the risk of cognitive decline (20) and other major adverse outcomes. Intensive glucose control in the Action to Control Cardiovascular Risk in Diabetes-Memory in Diabetes study (ACCORD MIND) was not found to benefit brain structure or cognitive function during follow-up (14). In the Diabetes Control and Complications Trial (DCCT), no significant long-term declines in cognitive function were observed, despite participants’ relatively high rates of recurrent severe hypoglycemia (21). To achieve the appropriate balance between glycemic control and risk for hypoglycemia, it is important to carefully assess and reassess patients’ risk for worsening of glycemic control and functional decline.

TREATMENT GOALS

Recommendations

12.5 Older adults who are otherwise healthy with few coexisting chronic illnesses and intact cognitive function and functional status should have lower glycemic goals (such as A1C < 7.5% [58 mmol/mol]), while those with multiple coexisting chronic illnesses, cognitive impairment, or functional dependence should have less stringent glycemic goals (such as A1C < 8.0–8.5% [64–69 mmol/mol]). C

12.6 Glycemic goals for some older adults might reasonably be
The care of older adults with diabetes is complicated by their clinical, cognitive, and functional heterogeneity. Some older individuals may have developed diabetes years earlier and have significant complications, others are newly diagnosed and may have had years of undiagnosed diabetes with resultant complications, and still other older adults may have truly recent-onset disease with few or no complications (22). Some older adults with diabetes have other underlying chronic conditions, substantial diabetes-related comorbidity, limited cognitive or physical functioning, or frailty (23,24). Other older individuals with diabetes have little comorbidity and are active. Life expectancies are highly variable but are often longer than clinicians realize. Providers caring for older adults with diabetes must take this heterogeneity into consideration when setting and prioritizing treatment goals (25) (Table 12.1). In addition, older adults with diabetes should be assessed for disease treatment and self-management knowledge, health literacy, and mathematical literacy (numeracy) at the onset of treatment. See Fig. 6.1 for patient- and disease-related factors to consider when determining individualized glycemic targets.

A1C is used as the standard biomarker for glycemic control in all patients with diabetes but may have limitations in patients who have medical conditions that impact red blood cell turnover (see Section 2 “Classification and Diagnosis of Diabetes” for additional details on the limitations of A1C) (26). Many conditions associated with increased red blood cell turnover, such as hemodialysis, recent blood loss or transfusion, or erythropoietin therapy, are commonly seen in older adults with functional limitations, which can falsely increase or decrease A1C. In these instances, plasma blood glucose and fingerstick readings should be used for goal setting (Table 12.1).

Healthy Patients With Good Functional Status
There are few long-term studies in older adults demonstrating the benefits of intensive glycemic, blood pressure, and lipid control. Patients who can be expected to live long enough to reap the benefits of long-term intensive diabetes management, who have good cognitive and physical function, and who choose to do so via shared decision making may be treated using therapeutic interventions and goals similar to those for younger adults with diabetes (Table 12.1). As with all patients with diabetes, diabetes self-management education and ongoing diabetes self-management support are vital components of diabetes care for older adults and their caregivers. Self-management knowledge and skills should be reassessed when regimen changes are made or an individual’s functional abilities diminish. In addition, declining or impaired ability to perform diabetes self-care behaviors may be an indication for referral of older adults with diabetes for cognitive and physical functional assessment using age-normalized evaluation tools (3,19).

Patients With Complications and Reduced Functionality
For patients with advanced diabetes complications, life-limiting comorbid illnesses, or substantial cognitive or functional impairments, it is reasonable to set less intensive glycemic goals (Table 12.1). Factors to consider in individualizing glycemic goals are outlined in Fig. 6.1. These patients are less likely to benefit from reducing the risk of microvascular complications and more likely to suffer serious adverse effects from hypoglycemia. However, patients with poorly controlled diabetes may be subject to acute complications of diabetes, including dehydration, poor wound healing, and hyperglycemic hyperosmolar coma. Glycemic goals at a minimum should avoid these consequences.

Vulnerable Patients at the End of Life
For patients receiving palliative care and end-of-life care, the focus should be to avoid symptoms and complications from glycemic management. Thus, when organ failure develops, several agents will have to be downtitrated or discontinued. For the dying patient, most agents for type 2 diabetes may be removed (27). There is, however, no consensus for the management of type 1 diabetes in this scenario (28). See END-OF-LIFE CARE below, for additional information.

Beyond Glycemic Control
Although hyperglycemia control may be important in older individuals with diabetes, greater reductions in morbidity and mortality are likely to result from control of other cardiovascular risk factors rather than from tight glycemic control alone. There is strong evidence from clinical trials of the value of treating hypertension in older adults (29,30). There is less evidence for lipid-lowering therapy and aspirin therapy, although the benefits of these interventions for primary prevention and secondary intervention are likely to apply to older adults whose life expectancies equal or exceed the time frames of the clinical trials.

LIFESTYLE MANAGEMENT

Recommendation
12.10 Optimal nutrition and protein intake is recommended for older adults; regular exercise, including aerobic activity and resistance training, should be encouraged in all older adults who can safely engage in such activities. B

Diabetes in the aging population is associated with reduced muscle strength, poor muscle quality, and accelerated loss of muscle mass, resulting in sarcopenia. Diabetes is also recognized as an independent risk factor for frailty. Frailty is characterized by decline in physical performance and an increased risk of poor
Table 12.1—Framework for considering treatment goals for glycemia, blood pressure, and dyslipidemia in older adults with diabetes (2)

<table>
<thead>
<tr>
<th>Patient characteristics/health status</th>
<th>Rationale</th>
<th>Reasonable A1C goal†</th>
<th>Fasting or preprandial glucose</th>
<th>Bedtime glucose</th>
<th>Blood pressure</th>
<th>Lipids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy (few coexisting chronic illnesses, intact cognitive and functional status)</td>
<td>Longer remaining life expectancy</td>
<td><7.5% (58 mmol/mol)</td>
<td>90–130 mg/dL (5.0–7.2 mmol/L)</td>
<td>90–150 mg/dL (5.0–8.3 mmol/L)</td>
<td><140/90 mmHg</td>
<td>Statin unless contraindicated or not tolerated</td>
</tr>
<tr>
<td>Complex/intermediate (multiple coexisting chronic illnesses* or 2+ instrumental ADL impairments or mild-to-moderate cognitive impairment)</td>
<td>Intermediate remaining life expectancy, high treatment burden, hypoglycemia vulnerability, fall risk</td>
<td><8.0% (64 mmol/mol)</td>
<td>90–150 mg/dL (5.0–8.3 mmol/L)</td>
<td>100–180 mg/dL (5.6–10.0 mmol/L)</td>
<td><140/90 mmHg</td>
<td>Statin unless contraindicated or not tolerated</td>
</tr>
<tr>
<td>Very complex/poor health (LTC or end-stage chronic illnesses** or moderate-to-severe cognitive impairment or 2+ ADL dependencies)</td>
<td>Limited remaining life expectancy makes benefit uncertain</td>
<td><8.5%† (69 mmol/mol)</td>
<td>100–180 mg/dL (5.6–10.0 mmol/L)</td>
<td>110–200 mg/dL (6.1–11.1 mmol/L)</td>
<td><150/90 mmHg</td>
<td>Consider likelihood of benefit of statin (secondary prevention more so than primary)</td>
</tr>
</tbody>
</table>

This represents a consensus framework for considering treatment goals for glycemia, blood pressure, and dyslipidemia in older adults with diabetes. The patient characteristic categories are general concepts. Not every patient will clearly fall into a particular category. Consideration of patient and caregiver preferences is an important aspect of treatment individualization. Additionally, a patient’s health status and preferences may change over time. A lower A1C goal may be set for an individual if achievable without recurrent or severe hypoglycemia or undue treatment burden. *Coexisting chronic illnesses are conditions serious enough to require medications or lifestyle management and may include arthritis, cancer, congestive heart failure, depression, emphysema, falls, hypertension, incontinence, stage 3 or worse chronic kidney disease, myocardial infarction, and stroke. **The presence of a single end-stage chronic illness, such as stage 3–4 congestive heart failure or oxygen-dependent lung disease, chronic kidney disease requiring dialysis, or uncontrolled metastatic cancer, may cause significant symptoms or impairment of functional status and significantly reduce life expectancy. A1C of 8.5% (69 mmol/mol) equates to an estimated average glucose of ~120 mg/dL (69 mmol/mol). Looser A1C targets above 8.5% (69 mmol/mol) are not recommended as they may expose patients to more frequent higher glucose values and the acute risks from glycosuria, dehydration, hyperglycemic hyperosmolar syndrome, and poor wound healing. ADL, activities of daily living.

Overtreatment of diabetes is discouraged in older adults with multiple medical conditions.
and is associated with an increased risk of hypoglycemia; unfortunately, overtreatment is common in clinical practice (34–38). Deintensification of regimens in patients taking noninsulin glucose-lowering medications can be achieved by either lowering the dose or discontinuing some medications, so long as the individualized A1C target is maintained. When patients are found to have an insulin regimen with complexity beyond their self-management abilities, lowering the dose may not be adequate. Simplification of the insulin regimen to match an individual’s self-management abilities in these situations has been shown to reduce hypoglycemia and disease-related distress without worsening glycemic control (39–41). Figure 12.1 depicts an algorithm that can be used to simplify the insulin regimen (39). Table 12.2 provides examples of and rationale for situations where deintensification and/or insulin regimen simplification may be appropriate in older adults.

Metformin

Metformin is the first-line agent for older adults with type 2 diabetes. Recent studies have indicated that it may be used safely in patients with estimated glomerular filtration rate ≥30 mL/min/1.73 m2 (42). However, it is contraindicated in patients with advanced renal insufficiency and should be used with caution in patients with impaired hepatic function or congestive heart failure due to the increased risk of lactic acidosis. Metformin may be temporarily discontinued before procedures, during hospitalizations, and when acute illness may compromise renal or liver function.

Thiazolidinediones

Thiazolidinediones, if used at all, should be used very cautiously in those with, or at risk for, congestive heart failure and those at risk for falls or fractures.

Insulin Secretagogues

Sulfonylureas and other insulin secretagogues are associated with hypoglycemia and should be used with caution. If used, shorter-duration sulfonylureas, such as glipizide, are preferred. Glyburide is a longer-duration sulfonylurea and contraindicated in older adults (43).

Incretin-Based Therapies

Oral dipeptidyl peptidase 4 (DPP-4) inhibitors have few side effects and minimal hypoglycemia, but their costs may be a barrier to some older patients. DPP-4 inhibitors do not increase major adverse cardiovascular outcomes (44).

Glucagon-like peptide 1 (GLP-1) receptor agonists are injectable agents, which require visual, motor, and cognitive skills for appropriate administration. They may be associated with nausea, vomiting, and diarrhea. Also, weight loss with GLP-1 receptor agonists may not be desirable in some older adults.
Table 12.2—Considerations for treatment regimen simplification and deintensification/deprescribing in older adults with diabetes (39,55)

<table>
<thead>
<tr>
<th>Patient characteristics/health status</th>
<th>Reasonable A1C/treatment goal</th>
<th>Rationale/considerations</th>
<th>When may regimen simplification be required?</th>
<th>When may treatment deintensification/deprescribing be required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy (few coexisting chronic illnesses, intact cognitive and functional status)</td>
<td>A1C <7.5% (58 mmol/mol)</td>
<td>• Patients can generally perform complex tasks to maintain good glycemic control when health is stable • During acute illness, patients may be more at risk for administration or dosing errors that can result in hypoglycemia, falls, fractures, etc.</td>
<td>• If severe or recurrent hypoglycemia occurs in patients on insulin therapy (even if A1C is appropriate) • If wide glucose excursions are observed • If cognitive or functional decline occurs following acute illness</td>
<td>• If severe or recurrent hypoglycemia occurs in patients on noninsulin therapies with high risk of hypoglycemia (even if A1C is appropriate) • If wide glucose excursions are observed • In the presence of polypharmacy</td>
</tr>
<tr>
<td>Complex/intermediate</td>
<td>A1C <8.0% (64 mmol/mol)</td>
<td>• Comorbidities may affect self-management abilities and capacity to avoid hypoglycemia • Long-acting medication formulations may decrease pill burden and complexity of medication regimen</td>
<td>• If severe or recurrent hypoglycemia occurs in patients on insulin therapy (even if A1C is appropriate) • If unable to manage complexity of an insulin regimen • If there is a significant change in social circumstances, such as loss of caregiver, change in living situation, or financial difficulties</td>
<td>• If severe or recurrent hypoglycemia occurs in patients on noninsulin therapies with high risk of hypoglycemia (even if A1C is appropriate) • If wide glucose excursions are observed • In the presence of polypharmacy</td>
</tr>
<tr>
<td>Community-dwelling patients receiving care in a skilled nursing facility for short-term rehabilitation</td>
<td>Avoid reliance on A1C</td>
<td>Glycemic control is important for recovery, wound healing, hydration, and avoidance of infections • Patients recovering from illness may not have returned to baseline cognitive function at the time of discharge • Consider the type of support the patient will receive at home</td>
<td>If treatment regimen increased in complexity during hospitalization, it is reasonable, in many cases, to reinstate the prehospitalization medication regimen during the rehabilitation</td>
<td>If the hospitalization for acute illness resulted in weight loss, anorexia, short-term cognitive decline, and/or loss of physical functioning</td>
</tr>
<tr>
<td>Very complex/poor health (long-term care or end-stage chronic illnesses or moderate-to-severe cognitive impairment or 2+ ADL dependencies)</td>
<td>A1C <8.5% (69 mmol/mol)!</td>
<td>• No benefits of tight glycemic control in this population • Hypoglycemia should be avoided • Most important outcomes are maintenance of cognitive and functional status</td>
<td>If on an insulin regimen and the patient would like to decrease the number of injections and fingerstick blood glucose monitoring events each day • If the patient has an inconsistent eating pattern</td>
<td>If on noninsulin agents with a high hypoglycemia risk in the context of cognitive dysfunction, depression, anorexia, or inconsistent eating pattern or taking any medications without clear benefits</td>
</tr>
<tr>
<td>Patients at end of life</td>
<td>Avoid hypoglycemia and symptomatic hyperglycemia</td>
<td>Goal is to provide comfort and avoid tasks or interventions that cause pain or discomfort • Caregivers are important in providing medical care and maintaining quality of life</td>
<td>If there is pain or discomfort caused by treatment (e.g., injections or fingersticks) • If there is excessive caregiver stress due to treatment complexity</td>
<td>If taking any medications without clear benefits in improving symptoms and/or comfort</td>
</tr>
</tbody>
</table>

Treatment regimen simplification refers to changing strategy to decrease the complexity of a medication regimen, e.g., fewer administration times, fewer fingerstick readings, decreasing the need for calculations (such as sliding scale insulin calculations or insulin-carbohydrate ratio calculations). Deintensification/deprescribing refers to decreasing the dose or frequency of administration of a treatment or discontinuing a treatment altogether. ADL, activities of daily living. *Consider adjustment of A1C goal if the patient has a condition that may interfere with erythrocyte life span/tturnover.
patients, particularly those with cachexia. In patients with established atherosclerotic cardiovascular disease, GLP-1 receptor agonists have shown cardiovascular benefits (44).

Sodium—Glucose Cotransporter 2 Inhibitors

Sodium–glucose cotransporter 2 inhibitors are administered orally, which may be convenient for older adults with diabetes; however, long-term experience in this population is limited despite the initial efficacy and safety data reported with these agents. In patients with established atherosclerotic cardiovascular disease, these agents have shown cardiovascular benefits (44).

Insulin Therapy

The use of insulin therapy requires that patients or their caregivers have good visual and motor skills and cognitive ability. Insulin therapy relies on the ability of the older patient to administer insulin on their own or with the assistance of a caregiver. Insulin doses should be titrated to meet individualized glycemic targets and to avoid hypoglycemia.

Once-daily basal insulin injection therapy is associated with minimal side effects and may be a reasonable option in many older patients. Multiple daily injections of insulin may be too complex for the older patient with advanced diabetes complications, life-limiting coexisting chronic illnesses, or limited functional status. Figure 12.1 provides a potential approach to insulin regimen simplification.

Other Factors to Consider

The needs of older adults with diabetes and their caregivers should be evaluated to construct a tailored care plan. Impaired social functioning may reduce their quality of life and increase the risk of functional dependency (45). The patient’s living situation must be considered as it may affect diabetes management and support needs. Social and instrumental support networks (e.g., adult children, caretakers) that provide instrumental or emotional support for older adults with diabetes should be included in diabetes management discussions and shared decision making.

Older adults in assisted living facilities may not have support to administer their own medications, whereas those living in a nursing home (community living centers) may rely completely on the care plan and nursing support. Those receiving palliative care (with or without hospice) may require an approach that emphasizes comfort and symptom management, while de-emphasizing strict metabolic and blood pressure control.

TREATMENT IN SKILLED NURSING FACILITIES AND NURSING HOMES

Recommendations

12.14 Consider diabetes education for the staff of long-term care facilities to improve the management of older adults with diabetes. E

12.15 Patients with diabetes residing in long-term care facilities need careful assessment to establish glycemic goals and to make appropriate choices of glucose-lowering agents based on their clinical and functional status. E

Management of diabetes in the long-term care (LTC) setting (i.e., nursing homes and skilled nursing facilities) is unique. Individualization of health care is important in all patients; however, practical guidance is needed for medical providers as well as the LTC staff and caregivers (46). Training should include diabetes detection and institutional quality assessment. LTC facilities should develop their own policies and procedures for prevention and management of hypoglycemia.

Resources

Staff of LTC facilities should receive appropriate diabetes education to improve the management of older adults with diabetes. Treatments for each patient should be individualized. Special management considerations include the need to avoid both hypoglycemia and the complications of hyperglycemia (2,47). For more information, see the ADA position statement “Management of Diabetes in Long-Term Care and Skilled Nursing Facilities” (46).

Nutritional Considerations

An older adult residing in an LTC facility may have irregular and unpredictable meal consumption, undernutrition, anorexia, and impaired swallowing. Furthermore, therapeutic diets may inadvertently lead to decreased food intake and contribute to unintentional weight loss and undernutrition. Diets tailored to a patient’s culture, preferences, and personal goals may increase quality of life, satisfaction with meals, and nutrition status (48).

Hypoglycemia

Older adults with diabetes in LTC are especially vulnerable to hypoglycemia. They have a disproportionately high number of clinical complications and comorbidities that can increase hypoglycemia risk: impaired cognitive and renal function, slowed hormonal regulation and counterregulation, suboptimal hydration, variable appetite and nutritional intake, polypharmacy, and slowed intestinal absorption (49). Oral agents may achieve similar glycemic outcomes in LTC populations as basal insulin (34,50).

Another consideration for the LTC setting is that, unlike the hospital setting, medical providers are not required to evaluate the patients daily. According to federal guidelines, assessments should be done at least every 30 days for the first 90 days after admission and then at least once every 60 days. Although in practice the patients may actually be seen more frequently, the concern is that patients may have uncontrolled glucose levels or wide excursions without the practitioner being notified. Providers may make adjustments to treatment regimens by telephone, fax, or in person directly at the LTC facilities provided they are given timely notification of blood glucose management issues from a standardized alert system.

The following alert strategy could be considered:

1. **Call provider immediately:** in case of low blood glucose levels ([≤70 mg/dL (3.9 mmol/L)].

2. **Call as soon as possible:** a) glucose values between 70 and 100 mg/dL (3.9 and 5.6 mmol/L) (regimen may need to be adjusted), b) glucose values greater than 250 mg/dL (13.9 mmol/L) within a 24-h period, c) glucose values greater than 300 mg/dL (16.7 mmol/L) over 2 consecutive days, d) when any reading is too high for the glucometer, or e) the patient is sick, with vomiting, symptomatic hyperglycemia, or poor oral intake.
END-OF-LIFE CARE

Recommendations

12.16 When palliative care is needed in older adults with diabetes, strict blood pressure control may not be necessary, and withdrawal of therapy may be appropriate. Similarly, the intensity of lipid management can be relaxed, and withdrawal of lipid-lowering therapy may be appropriate.

12.17 Overall comfort, prevention of distressing symptoms, and preservation of quality of life and dignity are primary goals for diabetes management at the end of life.

The management of the older adult at the end of life receiving palliative medicine or hospice care is a unique situation. Overall, palliative medicine promotes comfort, symptom control and prevention (pain, hypoglycemia, hyperglycemia, and dehydration), and preservation of dignity and quality of life in patients with limited life expectancy (47,51). A patient has the right to refuse testing and treatment, whereas providers may consider withdrawing treatment and limiting diagnostic testing, including a reduction in the frequency of fingerstick testing (52). Glucose targets should aim to prevent hypoglycemia and hyperglycemia. Treatment interventions need to be mindful of quality of life. Careful monitoring of oral intake is warranted. The decision process may need to involve the patient, family, and caregivers, leading to a care plan that is both convenient and effective for the goals of care (53). The pharmacologic therapy may include oral agents as first line, followed by a simplified insulin regimen. If needed, basal insulin can be implemented, accompanied by oral agents and without rapid-acting insulin. Agents that can cause gastrointestinal symptoms such as nausea or excess weight loss may not be good choices in this setting. As symptoms progress, some agents may be slowly tapered and discontinued.

Different patient categories have been proposed for diabetes management in those with advanced disease (28).

1. A stable patient: continue with the patient’s previous regimen, with a focus on the prevention of hypoglycemia and the management of hyperglycemia using blood glucose testing, keeping levels below the renal threshold of glucose. There is very little role for A1C monitoring and lowering.

2. A patient with organ failure: preventing hypoglycemia is of greater significance. Dehydration must be prevented and treated. In people with type 1 diabetes, insulin administration may be reduced as the oral intake of food decreases but should not be stopped. For those with type 2 diabetes, agents that may cause hypoglycemia should be downtitrated. The main goal is to avoid hypoglycemia, allowing for glucose values in the upper level of the desired target range.

3. A dying patient: for patients with type 2 diabetes, the discontinuation of all medications may be a reasonable approach, as patients are unlikely to have any oral intake. In patients with type 1 diabetes, there is no consensus, but a small amount of basal insulin may maintain glucose levels and prevent acute hyperglycemic complications.

References

13. Children and Adolescents: Standards of Medical Care in Diabetes—2019

The management of diabetes in children and adolescents cannot simply be derived from care routinely provided to adults with diabetes. The epidemiology, pathophysiology, developmental considerations, and response to therapy in pediatric-onset diabetes are different from adult diabetes. There are also differences in recommended care for children and adolescents with type 1 as opposed to type 2 diabetes. This section first addresses care for children and adolescents with type 1 diabetes and next addresses care for children and adolescents with type 2 diabetes. Figure 13.1 provides guidance on managing new-onset diabetes in overweight youth before type 1 or type 2 diabetes is diagnosed and so applies to all overweight youth. Lastly, guidance is provided in this section on transition of care from pediatric to adult providers to ensure that the continuum of care is appropriate as the child with diabetes develops into adulthood. Due to the nature of clinical research in children, the recommendations for children and adolescents with diabetes are less likely to be based on clinical trial evidence. However, expert opinion and a review of available and relevant experimental data are summarized in the American Diabetes Association (ADA) position statements “Type 1 Diabetes in Children and Adolescents” (1) and “Evaluation and Management of Youth-Onset Type 2 Diabetes” (2). The ADA consensus report “Youth-Onset Type 2 Diabetes Consensus Report: Current Status, Challenges, and Priorities” (3) characterizes type 2 diabetes in children and evaluates treatment options as well, but also discusses knowledge gaps and recruitment challenges in clinical and translational research in youth-onset type 2 diabetes.

TYPE 1 DIABETES

Type 1 diabetes is the most common form of diabetes in youth (4), although recent data suggest that it may account for a large proportion of cases diagnosed in adult life (5). The provider must consider the unique aspects of care and management of children and adolescents with type 1 diabetes, such as changes in insulin sensitivity related to physical growth and sexual maturation, ability to provide self-care, supervision in the child care
and school environment, neurological vulnerability to hypoglycemia and hyperglycemia in young children, as well as possible adverse neurocognitive effects of diabetic ketoacidosis (DKA) (6,7). Attention to family dynamics, developmental stages, and physiologic differences related to sexual maturity is essential in developing and implementing an optimal diabetes treatment plan (8).

A multidisciplinary team of specialists trained in pediatric diabetes management and sensitive to the challenges of children and adolescents with type 1 diabetes and their families should provide care for this population. It is essential that diabetes self-management education and support, medical nutrition therapy, and psychosocial support be provided at diagnosis and regularly thereafter in a developmentally appropriate format that builds on prior knowledge by individuals experienced with the educational, nutritional, behavioral, and emotional needs of the growing child and family. The appropriate balance between adult supervision and independent self-care should be defined at the first interaction and reevaluated at subsequent visits, with the expectation that it will evolve as the adolescent gradually becomes an emerging young adult.

Diabetes Self-management Education and Support

Recommendation

13.1 Youth with type 1 diabetes and parents/caregivers (for patients aged <18 years) should receive culturally sensitive and developmentally appropriate individualized diabetes self-management education and support according to national standards at diagnosis and routinely thereafter. B

No matter how sound the medical regimen, it can only be effective if the family and/or affected individuals are able to implement it. Family involvement is a vital component of optimal diabetes management throughout childhood and adolescence. Health care providers in the diabetes care team who care for children and adolescents must be capable of evaluating the educational, behavioral, emotional, and psychosocial factors that impact implementation of a treatment plan and must work with the individual and family to overcome barriers or re-define goals as appropriate. Diabetes self-management education and support requires periodic reassessment, especially as the youth grows, develops, and acquires the need for greater independent self-care skills. In addition, it is necessary to assess the educational needs and skills of day care providers, school nurses, or other school personnel who participate in the care of the young child with diabetes (9).

Nutrition Therapy

Recommendations

13.2 Individualized medical nutrition therapy is recommended for children and adolescents with type 1 diabetes as an essential component of the overall treatment plan. A

13.3 Monitoring carbohydrate intake, whether by carbohydrate counting or experience-based estimation, is key to achieving optimal glycemic control. B

13.4 Comprehensive nutrition education at diagnosis, with annual updates, by an experienced registered dietitian is recommended to assess caloric and nutrition intake in relation to weight status and cardiovascular disease risk factors and to inform macronutrient choices. E

Dietary management should be individualized: family habits, food preferences, religious or cultural needs, schedules, physical activity, and the patient’s and family’s abilities in numeracy, literacy, and self-management should be considered. Dietitian visits should include assessment for changes in food preferences over time, access to food, growth and development, weight status, cardiovascular risk, and potential for eating disorders. Dietary adherence is associated with better glycemic control in youth with type 1 diabetes (10).

Physical Activity and Exercise

Recommendations

13.5 Exercise is recommended for all youth with type 1 diabetes with the goal of 60 min of moderate- to vigorous-intensity aerobic activity daily, with vigorous muscle-strengthening and bone-strengthening activities at least 3 days per week. C

13.6 Education about frequent patterns of glycemia during and after exercise, which may include initial transient hyperglycemia followed by hypoglycemia, is essential. Families should also receive education on prevention and management of hypoglycemia during and after exercise, including ensuring patients have a pre-exercise glucose level of 90–250 mg/dL (5–13 mmol/L) and accessible carbohydrates before engaging in activity, individualized according to the type/intensity of the planned physical activity. E

13.7 Patients should be educated on strategies to prevent hypoglycemia during exercise, after exercise, and overnight following exercise, which may include reducing prandial insulin dosing for the meal/snack preceding (and, if needed, following) exercise, increasing carbohydrate intake, eating bedtime snacks, using continuous glucose monitoring, and/or reducing basal insulin doses. C

13.8 Frequent glucose monitoring before, during, and after exercise, with or without use of continuous glucose monitoring, is important to prevent, detect, and treat hypoglycemia and hyperglycemia with exercise. C

Exercise positively affects insulin sensitivity, physical fitness, strength building, weight management, social interaction, mood, self-esteem building, and creation of healthful habits for adulthood, but it also has the potential to cause both hypoglycemia and hyperglycemia. See below for strategies to mitigate hypoglycemia risk and minimize hyperglycemia with exercise. For an in-depth discussion, see recently published reviews and guidelines (11–13).

Overall, it is recommended that youth with type 1 diabetes participate in 60 min of moderate- (e.g., brisk walking, dancing) to vigorous- (e.g., running, jumping rope)
intensity aerobic activity daily, including resistance and flexibility training (14). Although uncommon in the pediatric population, patients should be medically evaluated for comorbid conditions or diabetes complications that may restrict participation in an exercise program. As hyperglycemia can occur before, during, and after physical activity, it is important to ensure that the elevated glucose level is not related to insulin deficiency that would lead to worsening hyperglycemia with exercise and ketosis risk. Intense activity should be postponed with marked hyperglycemia (glucose ≥350 mg/dL [19.4 mmol/L]), moderate to large urine ketones, and/or β-hydroxybutyrate (B-OHB) >1.5 mmol/L. Caution may be needed when B-OHB levels are ≥0.6 mmol/L (10,11).

The prevention and treatment of hypoglycemia associated with physical activity include decreasing the prandial insulin for the meal/snack before exercise and/or increasing food intake. Patients on insulin pumps can lower basal rates by ~10–50% or more and suspend for 1–2 h during exercise (15). Decreasing basal rates or long acting insulin doses by ~20% after exercise may reduce delayed exercise-induced hypoglycemia (16). Accessible rapid-acting carbohydrates and frequent blood glucose monitoring before, during, and after exercise, with or without continuous glucose monitoring, maximize safety with exercise.

Blood glucose targets prior to exercise should be 90–250 mg/dL (5.0–13.9 mmol/L). Consider additional carbohydrate intake during and/or after exercise, depending on the duration and intensity of physical activity, to prevent hypoglycemia. For low-to-moderate-intensity aerobic activities (30–60 min), and if the patient is fasting, 10–15 g of carbohydrate may prevent hypoglycemia (17). After insulin boluses (relative hyperinsulinemia), consider 0.5–1.0 g of carbohydrates/kg per hour of exercise (~30–60 g), which is similar to carbohydrate requirements to optimize performance in athletes without type 1 diabetes (18–20).

In addition, obesity is as common in children and adolescents with type 1 diabetes as in those without diabetes. It is associated with higher frequency of cardiovascular risk factors, and it disproportionately affects racial/ethnic minorities in the U.S. (21–25). Therefore, diabetes care providers should monitor weight status and encourage a healthy diet, exercise, and healthy weight as key components of pediatric type 1 diabetes care.

School and Child Care

As a large portion of a child’s day is spent in school, close communication with and the cooperation of school or day care personnel are essential for optimal diabetes management, safety, and maximal academic opportunities. Refer to the ADA position statements “Diabetes Care in the School Setting” (26) and “Care of Young Children With Diabetes in the Child Care Setting” (27) for additional details.

Psychosocial Issues

Recommendations

13.9 At diagnosis and during routine follow-up care, assess psychosocial issues and family stresses that could impact diabetes management and provide appropriate referrals to trained mental health professionals, preferably experienced in childhood diabetes.

13.10 Mental health professionals should be considered integral members of the pediatric diabetes multidisciplinary team.

13.11 Encourage developmentally appropriate family involvement in diabetes management tasks for children and adolescents, recognizing that premature transfer of diabetes care to the child can result in diabetes burn-out nonadherence and deterioration in glycemic control.

13.12 Providers should consider asking youth and their parents about social adjustment (peer relationships) and school performance to determine whether further intervention is needed.

13.13 Assess youth with diabetes for psychosocial and diabetes-related distress, generally starting at 7–8 years of age.

13.14 Offer adolescents time by themselves with their care provider(s) starting at age 12 years, or when developmentally appropriate.

13.15 Starting at puberty, preconception counseling should be incorporated into routine diabetes care for all girls of childbearing potential.

13.16 Begin screening youth with type 1 diabetes for eating disorders between 10 and 12 years of age. The Diabetes Eating Problems Survey-Revised (DEPS-R) is a reliable, valid, and brief screening tool for identifying disturbed eating behavior.

Rapid and dynamic cognitive, developmental, and emotional changes occur during childhood, adolescence, and emerging adulthood. Diabetes management during childhood and adolescence places substantial burdens on the youth and family, necessitating ongoing assessment of psychosocial status and diabetes distress in the patient and the caregiver during routine diabetes visits (28–34). Early detection of depression, anxiety, eating disorders, and learning disabilities can facilitate effective treatment options and help minimize adverse effects on diabetes management and disease outcomes (33,35). There are validated tools, such as the Problem Areas in Diabetes-Teen (PAID-T) and Parent (P-PAID-Teen) (34), that can be used in assessing diabetes-specific distress in youth starting at age 12 years and in their parent caregivers. Furthermore, the complexities of diabetes management require ongoing parental involvement in care throughout childhood with developmentally appropriate family teamwork between the growing child/teen and parent in order to maintain adherence and to prevent deterioration in glycemic control (36,37). As diabetes-specific family conflict is related to poorer adherence and glycemic control, it is appropriate to inquire about such conflict during visits and to either help to negotiate a plan for resolution or refer to an appropriate mental health specialist (38). Monitoring of social adjustment (peer relationships) and school performance can facilitate both well-being and academic achievement (39). Suboptimal glycemic control is a risk factor for underperformance at school and increased absenteeism (40).

Shared decision making with youth regarding the adoption of regimen components and self-management behaviors can improve diabetes self-efficacy, adherence, and metabolic outcomes (22,41).
Although cognitive abilities vary, the ethical position often adopted is the “mature minor rule,” whereby children after age 12 or 13 years who appear to be “mature” have the right to consent or withhold consent to general medical treatment, except in cases in which refusal would significantly endanger health (42).

Beginning at the onset of puberty or at diagnosis of diabetes, all adolescent girls and women with childbearing potential should receive education about the risks of malformations associated with poor metabolic control and the use of effective contraception to prevent unplanned pregnancy. Preconception counseling using developmentally appropriate educational tools enables adolescent girls to make well-informed decisions (43). Preconception counseling resources tailored for adolescents are available at no cost through the ADA (44). Refer to the ADA position statement “Psychosocial Care for People With Diabetes” for further details (35).

Youth with type 1 diabetes have an increased risk of disordered eating behavior as well as clinical eating disorders with serious short-term and long-term negative effects on diabetes outcomes and health in general. Therefore, it is important to screen for eating disorders in youth with type 1 diabetes using tools such as the Diabetes Eating Problems Survey-Revised (DEPS-R) to allow for early diagnosis and intervention (45–48).

Screening

Screening for psychosocial distress and mental health problems is an important component of ongoing care. It is important to consider the impact of diabetes on quality of life as well as the development of mental health problems related to diabetes distress, fear of hypoglycemia (and hyperglycemia), symptoms of anxiety, disordered eating behaviors as well as eating disorders, and symptoms of depression (49). Consider assessing youth for diabetes distress, generally starting at 7 or 8 years of age (35). Consider screening for depression and disordered eating behaviors using available screening tools (28,45). With respect to disordered eating, it is important to recognize the unique and dangerous disordered eating behavior of insulin omission for weight control in type 1 diabetes (50). The presence of a mental health professional on pediatric multidisciplinary teams highlights the importance of attending to the psychosocial issues of diabetes. These psychosocial factors are significantly related to self-management difficulties, suboptimal glycemic control, reduced quality of life, and higher rates of acute and chronic diabetes complications.

Glycemic Control

Table 13.1—Blood glucose and A1C targets for children and adolescents with type 1 diabetes

<table>
<thead>
<tr>
<th>Blood glucose goal range</th>
<th>A1C (Rationale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90–130 mg/dL (5.0–7.2 mmol/L)</td>
<td>90–150 mg/dL (5.0–8.3 mmol/L)</td>
</tr>
</tbody>
</table>

Pharmacologic Approaches to Glycemic Control

Recommendations

13.17 The majority of children and adolescents with type 1 diabetes should be treated with intensive insulin regimens, either via multiple daily injections or continuous subcutaneous insulin infusion. **A**

13.18 All children and adolescents with type 1 diabetes should self-monitor glucose levels multiple times daily (up to 6–10 times/day), including premeal, prebedtime, and as needed for safety in specific situations such as exercise, driving, or the presence of symptoms of hypoglycemia. **B**

13.19 Continuous glucose monitoring should be considered in all children and adolescents with type 1 diabetes, whether using injections or continuous subcutaneous insulin infusion, as an additional tool to help improve glucose control. Benefits of continuous glucose monitoring correlate with adherence to ongoing use of the device. **B**

13.20 Automated insulin delivery systems appear to improve glycemic control and reduce hypoglycemia in children and adolescents with type 1 diabetes. **B**

An A1C target of <7.5% (58 mmol/mol) should be considered in children with type 1 diabetes. **B**

Please refer to Section 7 “Diabetes Technology” for more information on the use of blood glucose meters, continuous glucose monitors, and insulin pumps. More information on insulin injection technique can be found in Section 9 “Pharmacologic Approaches to Glycemic Treatment,” p. S90.

Current standards for diabetes management reflect the need to lower glucose as safely as possible. This should be done with stepwise goals. When establishing individualized glycemic targets, special consideration should be given to the risk of hypoglycemia in young children (aged <6 years) who are often unable to recognize, articulate, and/or manage hypoglycemia. However, registry data indicate that lower A1C can be achieved in children, including those <6 years, without increased risk of severe hypoglycemia (51,52). Type 1 diabetes can be associated with adverse effects on cognition during childhood and adolescence. Factors that contribute to adverse effects on brain development and function include young age or DKA at onset of type 1 diabetes, severe hypoglycemia at <6 years of age, and chronic hyperglycemia (53,54). However, meticulous use of new therapeutic modalities such as rapid- and long-acting insulin analogs, technological advances (e.g., continuous glucose monitors, low-glucose suspend insulin pumps, and automated insulin delivery systems), and intensive self-management education now make it more feasible to achieve excellent glycemic control while reducing the incidence of severe hypoglycemia (55–64). Intermittently scanned continuous glucose monitors (sometimes referred to as “flash” continuous glucose monitors) are
not currently approved for use in children and adolescents. A strong relationship exists between frequency of blood glucose monitoring and glycemic control (57–66).

The Diabetes Control and Complications Trial (DCCT), which did not enroll children <13 years of age, demonstrated that near normalization of blood glucose levels was more difficult to achieve in adolescents than in adults. Nevertheless, the increased use of basal-bolus regimens, insulin pumps, frequent blood glucose monitoring, goal setting, and improved patient education in youth from infancy through adolescence has been associated with more children reaching the blood glucose targets recommended by ADA (67–70), particularly in those families in which both the parents and the child with diabetes participate jointly to perform the required diabetes-related tasks. Furthermore, studies documenting neurocognitive imaging differences related to hyperglycemia in children provide another motivation for lowering glycemic targets (6).

In selecting glycemic targets, the long-term health benefits of achieving a lower A1C should be balanced against the risks of hypoglycemia and the developmental burdens of intensive regimens in children and youth. In addition, achieving lower A1C levels is likely facilitated by setting lower A1C targets (51,71). A1C and blood glucose targets are presented in Table 13.1. Lower goals may be possible during the “honeymoon” phase of type 1 diabetes.

Key Concepts in Setting Glycemic Targets
- Targets should be individualized, and lower targets may be reasonable based on a benefit-risk assessment.
- Blood glucose targets should be modified in children with frequent hypoglycemia or hypoglycemia unawareness.
- Postprandial blood glucose values should be measured when there is a discrepancy between preprandial blood glucose values and A1C levels and to assess preprandial insulin doses in those on basal-bolus or pump regimens.

Autoimmune Conditions

Recommendation 13.22 Assess for additional autoimmune conditions soon after the diagnosis of type 1 diabetes and if symptoms develop. E

Because of the increased frequency of other autoimmune diseases in type 1 diabetes, screening for thyroid dysfunction and celiac disease should be considered (72,73). Periodic screening in asymptomatic individuals has been recommended, but the optimal frequency of screening is unclear.

Although much less common than thyroid dysfunction and celiac disease, other autoimmune conditions, such as Addison disease (primary adrenal insufficiency), autoimmune hepatitis, autoimmune gastritis, dermatomyositis, and myasthenia gravis, occur more commonly in the population with type 1 diabetes than in the general pediatric population and should be assessed and monitored as clinically indicated. In addition, relatives of patients should be offered testing for islet autoantibodies through research studies (e.g., TrialNet) for early diagnosis of preclinical type 1 diabetes (stages 1 and 2).

Thyroid Disease

Recommendations

13.23 Consider testing children with type 1 diabetes for antithyroid peroxidase and antithyroglobulin antibodies soon after the diagnosis. B

13.24 Measure thyroid-stimulating hormone concentrations at diagnosis when clinically stable or soon after glycemic control has been established. If normal, suggest rechecking every 1–2 years or sooner if the patient develops symptoms or signs suggestive of thyroid dysfunction, thryomegaly, an abnormal growth rate, or unexplained glycemic variability. E

Autoimmune thyroid disease is the most common autoimmune disorder associated with diabetes, occurring in 17–30% of patients with type 1 diabetes (74). At the time of diagnosis, about 25% of children with type 1 diabetes have thyroid autoantibodies (75); their presence is predictive of thyroid dysfunction—most commonly hypothyroidism, although hyperthyroidism occurs in ~0.5% of patients with type 1 diabetes (76,77). For thyroid autoantibodies, a recent study from Sweden indicated antithyroid peroxidase antibodies were more predictive than antithyroglobulin antibodies in multivariate analysis (78). Thyroid function tests may be misleading (euthyroid sick syndrome) if performed at the time of diagnosis owing to the effect of previous hyperglycemia, ketosis or ketoacidosis, weight loss, etc. Therefore, if performed at diagnosis and slightly abnormal, thyroid function tests should be repeated soon after a period of metabolic stability and good glycemic control. Subclinical hypothyroidism may be associated with increased risk of symptomatic hypoglycemia (79) and reduced linear growth rate. Hyperthyroidism alters glucose metabolism and usually causes deterioration of glycemic control.

Celiac Disease

Recommendations

13.25 Screen children with type 1 diabetes for celiac disease by measuring IgA tissue transglutaminase (tTG) antibodies, with documentation of normal total serum IgA levels, soon after the diagnosis of diabetes, or IgG to tTG and deamidated gliadin antibodies if IgA deficient. E

13.26 Repeat screening within 2 years of diabetes diagnosis and then again after 5 years and consider more frequent screening in children who have symptoms or a first-degree relative with celiac disease. B

13.27 Individuals with biopsy-confirmed celiac disease should be placed on a gluten-free diet and have a consultation with a dietitian experienced in managing both diabetes and celiac disease. B

Celiac disease is an immune-mediated disorder that occurs with increased frequency in patients with type 1 diabetes (1.6–16.4% of individuals compared with 0.3–1% in the general population) (72,73,80–83).

Screening for celiac disease includes measuring serum levels of IgA and tissue transglutaminase antibodies, or, with IgA deficiency, screening can include measuring IgG tissue transglutaminase antibodies or IgG deamidated gliadin peptide antibodies. Because most cases of celiac disease are diagnosed within the first 5 years after the diagnosis of type 1 diabetes, screening should be considered
Children found to have high-normal blood pressure (systolic blood pressure or diastolic blood pressure ≥90th percentile for age, sex, and height) or hypertension (systolic blood pressure or diastolic blood pressure ≥95th percentile for age, sex, and height) should have elevated blood pressure confirmed on 3 separate days.

Treatment

13.29 Initial treatment of high-normal blood pressure (systolic blood pressure or diastolic blood pressure ≥90th percentile for age, sex, and height) includes dietary modification and increased exercise, if appropriate, aimed at weight control. If target blood pressure is not reached within 3–6 months of initiating lifestyle intervention, pharmacologic treatment should be considered.

13.30 In addition to lifestyle modification, pharmacologic treatment of hypertension (systolic blood pressure or diastolic blood pressure consistently ≥95th percentile for age, sex, and height) should be considered as soon as hypertension is confirmed.

13.31 ACE inhibitors or angiotensin receptor blockers should be considered for the initial pharmacologic treatment of hypertension in children and adolescents, following reproductive counseling due to the potential teratogenic effects of both drug classes.

13.32 The goal of treatment is blood pressure consistently <90th percentile for age, sex, and height.

Blood pressure measurements should be performed using the appropriate size cuff with the child seated and relaxed. Hypertension should be confirmed on at least 3 separate days. Evaluation should proceed as clinically indicated. Treatment is generally initiated with an ACE inhibitor, but an angiotensin receptor blocker can be used if the ACE inhibitor is not tolerated (e.g., due to cough).

Normal blood pressure levels for age, sex, and height and appropriate methods for measurement are available online at nhlbi.nih.gov/files/docs/resources/heart/hbp_ped.pdf.

Dyslipidemia

Recommendations

Testing

13.33 Obtain a fasting lipid profile in children ≥10 years of age soon after the diagnosis of diabetes (after glucose control has been established).

13.34 If LDL cholesterol values are within the accepted risk level (<100 mg/dL [2.6 mmol/L]), a lipid profile repeated every 3–5 years is reasonable.

Treatment

13.35 If lipids are abnormal, initial therapy should consist of optimizing glucose control and medical nutrition therapy using a Step 2 American Heart Association diet to decrease the amount of saturated fat to 7% of total calories and dietary cholesterol to 200 mg/day, which is safe and does not interfere with normal growth and development.

13.36 After the age of 10 years, addition of a statin is suggested in patients who, despite medical nutrition therapy and lifestyle changes, continue to have LDL cholesterol >160 mg/dL (4.1 mmol/L) or LDL cholesterol >130 mg/dL (3.4 mmol/L) and one or more cardiovascular disease risk factor, following reproductive counseling because of the potential teratogenic effects of statins.

13.37 The goal of therapy is an LDL cholesterol value <100 mg/dL (2.6 mmol/L).
Pathophysiology. The atherosclerotic process begins in childhood, and although ASCVD events are not expected to occur during childhood, observations using a variety of methodologies show that youth with type 1 diabetes may have subclinical CVD within the first decade of diagnosis (95–97). Studies of carotid intima-media thickness have yielded inconsistent results (90,91).

Treatment. Pediatric lipid guidelines provide some guidance relevant to children with type 1 diabetes (90,98–100); however, there are few studies on modifying lipid levels in children with type 1 diabetes. A 6-month trial of dietary counseling produced a significant improvement in lipid levels (101); likewise, a lifestyle intervention trial with 6 months of exercise in adolescents demonstrated improvement in lipid levels (102).

Although intervention data are sparse, the American Heart Association categorizes children with type 1 diabetes in the highest tier for cardiovascular risk and recommends both lifestyle and pharmacologic treatment for those with elevated LDL cholesterol levels (100,103). Initial therapy should be with a nutrition plan that restricts saturated fat to 7% of total calories and dietary cholesterol to 200 mg/day. Data from randomized clinical trials in children as young as 7 months of age indicate that this diet is safe and does not interfere with normal growth and development (104).

For children with a significant family history of CVD, the National Heart, Lung, and Blood Institute recommends obtaining a fasting lipid panel beginning at 2 years of age (98). Abnormal results from a random lipid panel should be confirmed with a fasting lipid panel. Data from the SEARCH for Diabetes in Youth (SEARCH) study show that improved glucose control over a 2-year period is associated with a more favorable lipid profile; however, improved glycemic control alone will not normalize lipids in youth with type 1 diabetes and dyslipidemia (105).

Neither long-term safety nor cardiovascular outcome efficacy of statin therapy has been established for children; however, studies have shown short-term safety equivalent to that seen in adults and efficacy in lowering LDL cholesterol levels in familial hypercholesterolemia or severe hyperlipidemia, improving endothelial function and causing regression of carotid intimal thickening (106,107). Statins are not approved for patients aged <10 years, and statin treatment should generally not be used in children with type 1 diabetes before this age. Statins are contraindicated in pregnancy; therefore, prevention of unplanned pregnancies is of paramount importance for postpubertal girls (see Section 14 “Management of Diabetes in Pregnancy” for more information). The multicenter, randomized, placebo-controlled Adolescent Type 1 Diabetes Cardio-Renal Intervention Trial (AdDiT) provides safety data on pharmacologic treatment with an ACE inhibitor and statin in adolescents with type 1 diabetes.

Smoking

Recommendaions

13.38 Elicit a smoking history at initial and follow-up diabetes visits; discourage smoking in youth who do not smoke, and encourage smoking cessation in those who do smoke. A

13.39 E-Cigarette use should be discouraged. B

The adverse health effects of smoking are well recognized with respect to future cancer and CVD risk. Despite this, smoking rates are significantly higher among youth with diabetes than among youth without diabetes (108,109). In youth with diabetes, it is important to avoid additional CVD risk factors. Smoking increases the risk of onset of albuminuria; therefore, smoking avoidance is important to prevent both microvascular and macrovascular complications (98,110). Discouraging cigarette smoking, including e-cigarettes (111,112), is an important part of routine diabetes care. In younger children, it is important to assess exposure to cigarette smoke in the home because of the adverse effects of secondhand smoke and to discourage youth from ever smoking if exposed to smokers in childhood.

Microvascular Complications

Nephropathy

Recommendaions

Screening

13.40 Annual screening for albuminuria with a random (morning sample preferred to avoid effects of exercise) spot urine sample for albumin-to-creatinine ratio should be considered at puberty or at age >10 years, whichever is earlier. B

Data from 7,549 participants <20 years of age in the T1D Exchange clinic registry emphasize the importance of good glycemic and blood pressure control, particularly as diabetes duration increases, in order to reduce the risk of diabetic kidney disease. The data also underscore the importance of routine screening to ensure early diagnosis and timely treatment of albuminuria (113). An estimation of glomerular filtration rate (GFR), calculated using GFR estimating equations from the serum creatinine, height, age, and sex (114), should be considered at baseline and repeated as indicated based on clinical status, age, diabetes duration, and therapies. Improved methods are needed to screen for early GFR loss, since estimated GFR is inaccurate at GFR >60 mL/min/1.73 m² (114,115). The AdDiT study in adolescents with type 1 diabetes demonstrated safety of ACE inhibitor treatment, but the treatment did not change the albumin-to-creatinine ratio over the course of the study (90).

Retinopathy

Recommendaions

13.42 An initial dilated and comprehensive eye examination is recommended once youth have had type 1 diabetes for 3–5 years, provided they are age ≥10 years or puberty has started, whichever is earlier. B
After the initial examination, annual routine follow-up is generally recommended. Less-frequent examinations, every 2 years, may be acceptable on the advice of an eye care professional and based on risk factor assessment. E

Retinopathy (like albuminuria) most commonly occurs after the onset of puberty and after 5–10 years of diabetes duration (116). Referrals should be made to eye care professionals with expertise in diabetic retinopathy and experience in counseling the pediatric patient and family on the importance of prevention, early detection, and intervention.

Neuropathy

Recommendation

13.44 Consider an annual comprehensive foot exam at the start of puberty or at age ≥10 years, whichever is earlier, once the youth has had type 1 diabetes for 5 years. B

Diabetic neuropathy rarely occurs in prepubertal children or after only 1–2 years of diabetes (116), although data suggest a prevalence of distal peripheral neuropathy of 7% in 1,734 youth with type 1 diabetes and associated with the presence of CVD risk factors (117,118). A comprehensive foot exam, including inspection, palpation of dorsalis pedis and posterior tibial pulses, and determination of proprioception, vibration, and monofilament sensation, should be performed annually along with an assessment of symptoms of neuropathic pain (118). Foot inspection can be performed at each visit to educate youth regarding the importance of foot care (see Section 11 “Microvascular Complications and Foot Care”).

Type 2 diabetes in youth has increased over the past 20 years, and recent estimates suggest an incidence of ~5,000 new cases per year in the U.S. (119). The Centers for Disease Control and Prevention published projections for type 2 diabetes prevalence using the SEARCH database; assuming a 2.3% annual increase, the prevalence in those under 20 years of age will quadruple in 40 years (120,121).

Evidence suggests that type 2 diabetes in youth is different not only from type 1 diabetes but also from type 2 diabetes in adults and has unique features, such as a more rapidly progressive decline in β-cell function and accelerated development of diabetes complications (2,122). Type 2 diabetes disproportionately impacts youth of ethnic and racial minorities and can occur in complex psychosocial and cultural environments, which may make it difficult to sustain healthy lifestyle changes and self-management behaviors (22,123–126). Additional risk factors associated with type 2 diabetes in youth include adiposity, family history of diabetes, female sex, and low socioeconomic status (122).

As with type 1 diabetes, youth with type 2 diabetes spend much of the day in school. Therefore, close communication with and the cooperation of school personnel are essential for optimal diabetes management, safety, and maximal academic opportunities.

Screening and Diagnosis

Recommendations

13.45 Risk-based screening for prediabetes and/or type 2 diabetes should be considered in children and adolescents after the onset of puberty or ≥10 years of age, whichever occurs earlier, who are overweight (BMI ≥85th percentile) or obese (BMI ≥95th percentile) and who have one or more additional risk factors for diabetes (see Table 2.4 for evidence grading of other risk factors).

13.46 If tests are normal, repeat testing at a minimum of 3-year intervals E, or more frequently if BMI is increasing. C

13.47 Fasting plasma glucose, 2-h plasma glucose during a 75-g oral glucose tolerance test, and A1C can be used to test for prediabetes or diabetes in children and adolescents. B

13.48 Children and adolescents with overweight/obesity in whom the diagnosis of type 2 diabetes is being considered should have a panel of pancreatic autoantibodies tested to exclude the possibility of autoimmune type 1 diabetes. B

In the last decade, the incidence and prevalence of type 2 diabetes in adolescents has increased dramatically, especially in racial and ethnic minority populations (98,127). A few recent studies suggest oral glucose tolerance tests or fasting plasma glucose values as more suitable diagnostic tests than A1C in the pediatric population, especially among certain ethnicities (128), although fasting glucose alone may overdiagnose diabetes in children (129,130). In addition, many of these studies do not recognize that diabetes diagnostic criteria are based on long-term health outcomes, and validations are not currently available in the pediatric population (131). ADA acknowledges the limited data supporting A1C for diagnosing type 2 diabetes in children and adolescents. Although A1C is not recommended for diagnosis of diabetes in children with cystic fibrosis or symptoms suggestive of acute onset of type 1 diabetes, and only A1C assays without interference are appropriate for children with hemoglobinopathies, ADA continues to recommend A1C for diagnosis of type 2 diabetes in this population (132,133).

Diagnostic Challenges

Given the current obesity epidemic, distinguishing between type 1 and type 2 diabetes in children can be difficult. Overweight and obesity are common in children with type 1 diabetes (23), and diabetes-associated autoantibodies and ketosis may be present in pediatric patients with features of type 2 diabetes (including obesity and acanthosis nigricans) (129). The presence of islet autoantibodies has been associated with faster progression to insulin deficiency (129). At onset, DKA occurs in ~6% of
youth aged 10–19 years with type 2 diabetes (134). Although uncommon, type 2 diabetes has been observed in prepubertal children under the age of 10, and thus it should be part of the differential in children with suggestive symptoms (135). Finally, obesity (136) and type 2 diabetes–associated genetic factors may (137) contribute to the development of type 1 diabetes in some individuals, which further blurs the lines between diabetes types. However, accurate diagnosis is critical, as treatment regimens, educational approaches, dietary advice, and outcomes differ markedly between patients with the two diagnoses.

Management

Recommendations
Lifestyle Management

13.49 All youth with type 2 diabetes and their families should receive comprehensive diabetes self-management education and support that is specific to youth with type 2 diabetes and is culturally competent. B

13.50 Youth with overweight/obesity and type 2 diabetes and their families should be provided with developmentally and culturally appropriate comprehensive lifestyle programs that are integrated with diabetes management to achieve 7–10% decrease in excess weight. C

13.51 Given the necessity of long-term weight management for children and adolescents with type 2 diabetes, lifestyle intervention should be based on a chronic care model and offered in the context of diabetes care. E

13.52 Youth with diabetes, like all children, should be encouraged to participate in at least 30–60 min of moderate to vigorous physical activity at least 5 days per week (and strength training on at least 3 days/week) B and to decrease sedentary behavior. C

13.53 Nutrition for youth with type 2 diabetes, like all children, should focus on healthy eating patterns that emphasize consumption of nutrient-dense, high-quality foods and decreased consumption of calorie-dense, nutrient-poor foods, particularly sugar-added beverages. B

Glycemic Targets

13.54 Home self-monitoring of blood glucose regimens should be individualized, taking into consideration the pharmacologic treatment of the patient. E

13.55 A1C should be measured every 3 months. E

13.56 A reasonable A1C target for most children and adolescents with type 2 diabetes treated with oral agents alone is <7% (53 mmol/mol). More stringent A1C targets (such as <6.5% [48 mmol/mol]) may be appropriate for selected individual patients if this can be achieved without significant hypoglycemia or other adverse effects of treatment. Appropriate patients might include those with short duration of diabetes and lesser degrees of β-cell dysfunction and patients treated with lifestyle or metformin only who achieve significant weight improvement. E

13.57 A1C targets for patients on insulin should be individualized, taking into account the relatively low rates of hypoglycemia in youth-onset type 2 diabetes. E

Pharmacologic Management

13.58 Initiate pharmacologic therapy, in addition to lifestyle therapy, at diagnosis of type 2 diabetes. A

13.59 In incidentally diagnosed or metabolically stable patients (A1C <8.5% [69 mmol/mol] and asymptomatic), metformin is the initial pharmacologic treatment of choice if renal function is normal. A

13.60 Youth with marked hyperglycemia (blood glucose ≥250 mg/dL [13.9 mmol/L], A1C ≥8.5% [69 mmol/mol]) without acidosis at diagnosis who are symptomatic with polyuria, polydipsia, nocturia, and/or weight loss should be treated initially with basal insulin while metformin is initiated and titrated. B

13.61 In patients with ketosis/ketoacidosis, treatment with subcutaneous or intravenous insulin should be initiated to rapidly correct the hyperglycemia and the metabolic derangement. Once acidosis is resolved, metformin should be initiated while subcutaneous insulin therapy is continued. A

13.62 In individuals presenting with severe hyperglycemia (blood glucose ≥600 mg/dL [33.3 mmol/L]), consider assessment for hyperglycemic hyperosmolar nonketotic syndrome. A

13.63 If the A1C target is no longer met with metformin monotherapy, or if contraindications or intolerable side effects of metformin develop, basal insulin therapy should be initiated. B

13.64 Patients treated with basal insulin up to 1.5 units/kg/day who do not meet A1C target should be moved to multiple daily injections with basal and premeal bolus insulins. E

13.65 In patients initially treated with insulin and metformin who are meeting glucose targets based on home blood glucose monitoring, insulin can be tapered over 2–6 weeks by decreasing the insulin dose 10–30% every few days. B

13.66 Use of medications not approved by the U.S. Food and Drug Administration for youth with type 2 diabetes is not recommended outside of research trials. B

Treatment of youth-onset type 2 diabetes should include lifestyle management, diabetes self-management education, and pharmacologic treatment. Initial treatment of youth with obesity and diabetes must take into account that diabetes type is often uncertain in the first few weeks of treatment, due to overlap in presentation, and that a substantial percentage of youth with type 2 diabetes will present with clinically significant ketoacidosis (138). Therefore, initial therapy should address...
the hyperglycemia and associated metabolic derangements irrespective of ultimate diabetes type, with adjustment of therapy once metabolic compensation has been established and subsequent information, such as islet autoantibody results, becomes available. Figure 13.1 provides an approach to initial treatment of new-onset diabetes in overweight youth.

Glycemic targets should be individualized, taking into consideration long-term health benefits of more stringent targets as well as risk for adverse effects, such as hypoglycemia. A lower target A1C in youth with type 2 diabetes when compared with those recommended in type 1 diabetes is justified by lower risk of hypoglycemia and higher risk of complications (139–142).

Patients and their families must prioritize lifestyle modifications such as eating a balanced diet, achieving and maintaining a healthy weight, and exercising regularly. A family-centered approach to nutrition and lifestyle modification is essential in children with type 2 diabetes, and nutrition recommendations should be culturally appropriate and sensitive to family resources (see Section 5 “Lifestyle Management”). Given the complex social and environmental context surrounding youth with type 2 diabetes, individual-level lifestyle interventions may not be sufficient to target the complex interplay of family dynamics, mental health, community readiness, and the broader environmental system (2).

A multidisciplinary diabetes team, including a physician, diabetes nurse educator, registered dietitian, and psychologist or social worker, is essential. In addition to blood glucose control and self-management education (143–145), initial treatment must include management of comorbidities such as obesity, dyslipidemia, hypertension, and microvascular complications.

Current pharmacologic treatment options for youth-onset type 2 diabetes are limited to two approved drugs—insulin and metformin (2). Presentation with ketoacidosis or marked ketosis requires a period of insulin therapy until fasting and postprandial glycemia have been restored to normal or near-normal levels. Metformin therapy may be used as an adjunct after resolution of ketoacidosis. Initial treatment should also be with insulin when the distinction between type 1 diabetes and type 2 diabetes is unclear and in patients who have random blood glucose concentrations ≥250 mg/dL (13.9 mmol/L) and/or A1C ≥8.5% (69 mmol/mol) (146). Insulin is needed when the glycemic target is not met on metformin alone, or if there is metformin intolerance or renal or hepatic insufficiency (147).

When insulin treatment is not required, initiation of metformin is recommended. The Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study found that metformin alone provided durable glycemic control in overweight youth (2).
control (AIC ≤8% [64 mmol/mol] for 6 months) in approximately half of the subjects (148). To date, the TODAY study is the only trial combining lifestyle and metformin therapy in youth with type 2 diabetes; the combination did not perform better than metformin alone in achieving durable glycemic control (148).

Metabolic Surgery

Recommendations

13.67 Metabolic surgery may be considered for the treatment of adolescents with type 2 diabetes who are markedly obese (BMI >35 kg/m²) and who have uncontrolled glycemia and/or serious comorbidities despite lifestyle and pharmacologic intervention.

13.68 Metabolic surgery should be performed only by an experienced surgeon working as part of a well-organized and engaged multidisciplinary team including surgeon, endocrinologist, nutritionist, behavioral health specialist, and nurse.

The results of weight-loss and lifestyle interventions for obesity in children and adolescents have been disappointing, and no effective and safe pharmacologic intervention is available or approved by the U.S. Food and Drug Administration in youth. Over the last decade, weight-loss surgery has been increasingly performed in adolescents with obesity. Small retrospective analyses and a recent prospective multicenter nonrandomized study suggest that bariatric or metabolic surgery may have benefits in obese adolescents with type 2 diabetes similar to those observed in adults. Teenagers experience similar degrees of weight loss, diabetes remission, and improvement of cardiometabolic risk factors for at least 3 years after surgery (149). No randomized trials, however, have yet compared the effectiveness and safety of surgery to those of conventional treatment options in adolescents (150). The guidelines used as an indication for metabolic surgery in adolescents generally include BMI >35 kg/m² with comorbidities or BMI >40 kg/m² with or without comorbidities (151–162). A number of groups, including the Pediatric Bariatric Study Group and the Teen Longitudinal Assessment of Bariatric Surgery (Teen-LABS) Study have demonstrated the effectiveness of metabolic surgery in adolescents (155–161).

Prevention and Management of Diabetes Complications

Nephropathy

13.69 Blood pressure should be measured at every visit.

13.70 Blood pressure should be optimized to reduce risk and/or slow the progression of diabetic kidney disease.

13.71 If blood pressure is >95th percentile for age, sex, and height, increased emphasis should be placed on lifestyle management to promote weight loss. If blood pressure remains above the 95th percentile after 6 months, antihypertensive therapy should be initiated.

13.72 Initial therapeutic options include ACE inhibitors or angiotensin receptor blockers. Other blood pressure–lowering agents may be added as needed.

13.73 Protein intake should be at the recommended daily allowance of 0.8 g/kg/day.

13.74 Urine albumin-to-creatinine ratio should be obtained at the time of diagnosis and annually thereafter. An elevated urine albumin-to-creatinine ratio (>30 mg/g creatinine) should be confirmed on two of three samples.

13.75 Estimated glomerular filtration rate should be determined at the time of diagnosis and annually thereafter.

13.76 In nonpregnant patients with diabetes and hypertension, either an ACE inhibitor or an angiotensin receptor blocker is recommended for those with modestly elevated urinary albumin-to-creatinine ratio (30–299 mg/g creatinine) and is strongly recommended for those with urinary albumin-to-creatinine ratio >300 mg/g creatinine and/or estimated glomerular filtration rate <60 ml/min/1.73 m².

13.77 For those with nephropathy, continued monitoring (yearly urinary albumin-to-creatinine ratio, estimated glomerular filtration rate, and serum potassium) may aid in assessing adherence and detecting progression of disease.

13.78 Referral to nephrology is recommended in case of uncertainty of etiology, worsening urinary albumin-to-creatinine ratio, or decrease in estimated glomerular filtration rate.

Neuropathy

13.79 Youth with type 2 diabetes should be screened for the presence of neuropathy by foot examination at diagnosis and annually. The examination should include inspection, assessment of foot pulses, pinprick and 10-g monofilament sensation tests, testing of vibration sensation using 128-Hz tuning fork, and ankle reflexes.

13.80 Prevention should focus on achieving glycemic targets.

Retinopathy

13.81 Screening for retinopathy should be performed by dilated fundoscopy or retinal photography at or soon after diagnosis and annually thereafter.

13.82 Optimizing glycemia is recommended to decrease the risk or slow the progression of retinopathy.

13.83 Less frequent examination (every 2 years) may be considered if there is adequate glycemic control and a normal eye exam.

Nonalcoholic Fatty Liver Disease

13.84 Evaluation for nonalcoholic fatty liver disease (by measuring aspartate aminotransferase and alanine aminotransferase) should be done at diagnosis and annually thereafter.
Referral to gastroenterology should be considered for persistently elevated or worsening transaminases. B

Obstructive Sleep Apnea
Screening for symptoms of sleep apnea should be done at each visit, and referral to a pediatric sleep specialist for evaluation and a polysomnogram, if indicated, is recommended. Obstructive sleep apnea should be treated when documented. B

Polycystic Ovary Syndrome
Evaluate for polycystic ovary syndrome in female adolescents with type 2 diabetes, including laboratory studies when indicated. B

Oral contraceptive pills for treatment of polycystic ovary syndrome are not contraindicated for girls with type 2 diabetes. C

Metformin in addition to lifestyle modification is likely to improve the menstrual cyclicity and hyperandrogenism in girls with type 2 diabetes. E

Cardiovascular Disease
Intensive lifestyle interventions focusing on weight loss, dyslipidemia, hypertension, and dysglycemia are important to prevent overt macrovascular disease in early adulthood. E

Dyslipidemia
Lipid testing should be performed when initial glycemic control has been achieved and annually thereafter. B

Optimal goals are LDL cholesterol <100 mg/dL (2.6 mmol/L), HDL cholesterol >35 mg/dL (0.905 mmol/L), and triglycerides <150 mg/dL (1.7 mmol/L). E

If LDL cholesterol is >130 mg/dL, blood glucose control should be maximized and dietary counseling should be provided using the American Heart Association Step 2 diet. E

If LDL cholesterol remains above goal after 6 months of dietary intervention, initiate therapy with statin, with goal of LDL <100 mg/dL. B

If triglycerides are >400 mg/dL (4.7 mmol/L) fasting or >1,000 mg/dL (11.6 mmol/L) nonfasting, optimize glycemia and begin fibrate, with a goal of <400 mg/dL (4.7 mmol/L) fasting (to reduce risk for pancreatitis). C

Cardiac Function Testing
Routine screening for heart disease with electrocardiogram, echocardiogram, or stress testing is not recommended in asymptomatic youth with type 2 diabetes. B

Comorbidities may already be present at the time of diagnosis of type 2 diabetes in youth (122,163). Therefore, blood pressure measurement, a fasting lipid panel, assessment of random urine albumin-to-creatinine ratio, and a dilated eye examination should be performed at diagnosis. Thereafter, screening guidelines and treatment recommendations for hypertension, dyslipidemia, urine albumin excretion, and retinopathy are similar to those for youth with type 1 diabetes. Additional problems that may need to be addressed include polycystic ovary disease and other comorbidities associated with pediatric obesity, such as sleep apnea, hepatic steatosis, orthopedic complications, and psychosocial concerns. The ADA position statement “Evaluation and Management of Youth-Onset Type 2 Diabetes” (2) provides guidance on the prevention, screening, and treatment of type 2 diabetes and its comorbidities in children and adolescents.

Youth-onset type 2 diabetes is associated with significant microvascular and macrovascular risk burden and a substantial increase in the risk of cardiovascular morbidity and mortality at an earlier age than those diagnosed later in life (164). The higher complication risk in earlier-onset type 2 diabetes is related to prolonged lifetime exposure to hyperglycemia and other atherogenic risk factors, including insulin resistance, dyslipidemia, hypertension, and chronic inflammation. There is low risk of hypoglycemia in youth with type 2 diabetes, even if they are being treated with insulin (165), and there are high rates of complications (139–142). These diabetes comorbidities also appear to be higher than in youth with type 1 diabetes despite shorter diabetes duration and lower A1C (163). In addition, the progression of vascular abnormalities appears to be more pronounced in youth-onset type 2 diabetes compared with type 1 diabetes of similar duration, including ischemic heart disease and stroke (166).

Psychosocial Factors

Recommendations

Providers should assess social context, including potential food insecurity, housing stability, and financial barriers, and apply that information to treatment decisions. E

Use patient-appropriate standardized and validated tools to assess for diabetes distress and mental/behavioral health in youth with type 2 diabetes, with attention to symptoms of depression and eating disorders, and refer to specialty care when indicated. B

When choosing glucose-lowering or other medications for youth with overweight/obesity and type 2 diabetes, consider medication-taking behavior and their effect on weight. E

Starting at puberty, preconception counseling should be incorporated into routine diabetes clinic visits for all females of childbearing potential because of the adverse pregnancy outcomes in this population. A

Patients should be screened for smoking and alcohol use at diagnosis and regularly thereafter. C

Most youth with type 2 diabetes come from racial/ethnic minority groups, have low socioeconomic status, and often experience multiple psychosocial...
stressors (22,35,123–126). Consideration of the sociocultural context and efforts to personalize diabetes management are of critical importance to minimize barriers to care, enhance adherence, and maximize response to treatment.

Evidence about psychiatric disorders and symptoms in youth with type 2 diabetes is limited (167–171), but given the sociocultural context for many youth and the medical burden and obesity associated with type 2 diabetes, ongoing surveillance of mental health/behavioral health is indicated. Symptoms of depression and disordered eating are common and associated with poorer glycemic control (168,172,173).

Many of the drugs prescribed for diabetes and psychiatric disorders are associated with weight gain and can increase patients’ concerns about eating, body shape, and weight (174,175).

The TODAY study documented (176) that despite disease- and age-specific counseling, 10.2% of the females in the cohort became pregnant over an average of 3.8 years of study participation. Of note, 26.4% of pregnancies ended in a miscarriage, stillbirth, or intrauterine death, and 20.5% of the live-born infants had a major congenital anomaly.

TRANSITION FROM PEDIATRIC TO ADULT CARE

Recommendations

13.102 Pediatric diabetes providers should begin to prepare youth for transition to adult health care in early adolescence and, at the latest, at least 1 year before the transition. E

13.103 Both pediatric and adult diabetes care providers should provide support and resources for transitioning young adults. E

13.104 Youth with type 2 diabetes should be transferred to an adult-oriented diabetes specialist when deemed appropriate by the patient and provider. E

Care and close supervision of diabetes management are increasingly shifted from parents and other adults to the youth with type 1 or type 2 diabetes throughout childhood and adolescence. The shift from pediatric to adult health care providers, however, often occurs abruptly as the older teen enters the next developmental stage, referred to as emerging adulthood (177), which is a critical period for young people who have diabetes. During this period of major life transitions, youth begin to move out of their parents’ homes and must become fully responsible for their diabetes care. Their new responsibilities include self-management of their diabetes, making medical appointments, and financing health care, once they are no longer covered by their parents’ health insurance plans (ongoing coverage until age 26 years is currently available under provisions of the U.S. Affordable Care Act). In addition to lapses in health care, this is also a period associated with deterioration in glycemic control; increased occurrence of acute complications; psychosocial, emotional, and behavioral challenges; and the emergence of chronic complications (178–181). The transition period from pediatric to adult care is prone to fragmentation in health care delivery, which may adversely impact health care quality, cost, and outcomes (182).

Although scientific evidence is limited, it is clear that comprehensive and coordinated planning that begins in early adolescence is necessary to facilitate a seamless transition from pediatric to adult health care (178,179,183,184). A comprehensive discussion regarding the challenges faced during this period, including specific recommendations, is found in the ADA position statement “Diabetes Care for Emerging Adults: Recommendations for Transition From Pediatric to Adult Diabetes Care Systems” (179).

The Endocrine Society in collaboration with the ADA and other organizations has developed transition tools for clinicians and youth and families (184).

References

17. Riddell MC, Milliken J. Preventing exercise-induced hypoglycemia in type 1 diabetes using real-time continuous glucose monitoring and a

42. Coleman DL, Rosso PM. The legal authority of mature minors to consent to general medical treatment. Pediatrics 2013;131:786–793

83. Craig ME, Prinz N, Boyle CT, et al.; Australasian Diabetes Data Network (ADDN); T1D Exchange Clinic Network (T1Dx); National Paediatric Diabetes Audit (NPDA) and the National Paediatric Diabetes and Child Health; Prospective Diabetes Follow-up Registry (DPV) initiative. Prevalence of celiac disease in 52,721 youth with type 1 diabetes: international comparison across three continents. Diabetes Care 2017;40:1034–1040.

100. Kavey R-EW, Allada V, Daniels SR, et al.; American Heart Association Expert Panel on Population and Prevention Science; American Heart Association Council on Cardiovascular Disease in the Young; American Heart Association Council on Epidemiology and Prevention; American Heart Association Council on Nutrition, Physical Activity and Metabolism; American Heart Association Council on High Blood Pressure Research; American Heart Association Council on Cardiovascular Nursing; American Heart Association Council on the Kidney in Heart Disease; Interdisciplinary Working Group on Quality of Care and Outcomes Research. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity
and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research endorsed by the American Academy of Pediatrics. Circulation 2006;114:2710–2738

103. McCrindle BW, Urbina EM, Dennison BA, et al.; American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee; American Heart Association Council of Cardiovascular Disease in the Young; American Heart Association Nursing. Drug therapy of high-risk lipid abnormalities in children and adolescents: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee, Council of Cardiovascular Disease in the Young, with the Council on Cardiovascular Nursing. Circulation 2007;115:1948–1967

166. Song SH. Complication characteristics between young-onset type 2 versus type 1 diabetes in a UK population. BMJ Open Diabetes Res Care 2015;3:e000044
174. Shetler RC. Depression, antidepressants, and weight gain in children. Obesity (Silver Spring) 2016;24:2450
179. Peters A, LaFle RF; American Diabetes Association Transitions Working Group. Diabetes care for emerging adults: recommendations for transition from pediatric to adult diabetes care systems: a position statement of the American Diabetes Association, with representation by the American College of Osteopathic Family Physicians, the American Academy of Pediatrics, the American Association of Clinical Endocrinologists, the American Osteopathic Association, the Centers for Disease Control and Prevention, Children with Diabetes, The Endocrine Society, the International Society for Pediatric and Adolescent Diabetes, Juvenile Diabetes Research Foundation International, the National Diabetes Education Program, and the Pediatric Endocrine Society (formerly Lawson Wilkins Pediatric Endocrine Society). Diabetes Care 2011;34:2477–2485
14. Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes—2019

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

DIABETES IN PREGNANCY

The prevalence of diabetes in pregnancy has been increasing in the U.S. The majority is gestational diabetes mellitus (GDM) with the remainder primarily preexisting type 1 diabetes and type 2 diabetes. The rise in GDM and type 2 diabetes in parallel with obesity both in the U.S. and worldwide is of particular concern. Both type 1 diabetes and type 2 diabetes in pregnancy confer significantly greater maternal and fetal risk than GDM, with some differences according to type of diabetes. In general, specific risks of uncontrolled diabetes in pregnancy include spontaneous abortion, fetal anomalies, preeclampsia, fetal demise, macrosomia, neonatal hypoglycemia, and neonatal hyperbilirubinemia, among others. In addition, diabetes in pregnancy may increase the risk of obesity and type 2 diabetes in offspring later in life (1,2).

PRECONCEPTION COUNSELING

14.1 Starting at puberty and continuing in all women with reproductive potential, preconception counseling should be incorporated into routine diabetes care.
14.2 Family planning should be discussed and effective contraception should be prescribed and used until a woman is prepared and ready to become pregnant.
14.3 Preconception counseling should address the importance of glycemic management as close to normal as is safely possible, ideally A1C <6.5% (48 mmol/mol), to reduce the risk of congenital anomalies, preeclampsia, macrosomia, and other complications.

All women of childbearing age with diabetes should be counseled about the importance of tight glycemic control prior to conception. Observational studies show an increased risk of diabetic embryopathy, especially anencephaly, microcephaly, congenital heart disease, and caudal regression, directly proportional to elevations in
A1C during the first 10 weeks of pregnancy (3). Although observational studies are confounded by the association between elevated periconceptional A1C and other poor self-care behaviors, the quantity and consistency of data are convincing and support the recommendation to optimize glycemic control prior to conception, with A1C <6.5% (48 mmol/mol) associated with the lowest risk of congenital anomalies (3–6).

There are opportunities to educate all women and adolescents of reproductive age with diabetes about the risks of unplanned pregnancies and improved maternal and fetal outcomes with pregnancy planning (7). Effective preconception counseling could avert substantial health and associated cost burdens in offspring (8). Family planning should be discussed, and effective contraception should be prescribed and used until a woman is prepared and ready to become pregnant.

To minimize the occurrence of complications, beginning at the onset of puberty or at diagnosis, all girls and women with diabetes of childbearing potential should receive education about 1) the risks of malformations associated with unplanned pregnancies and poor metabolic control and 2) the use of effective contraception at all times when preventing a pregnancy. Preconception counseling using developmentally appropriate educational tools enables adolescent girls to make well-informed decisions (7). Preconception counseling resources tailored for adolescents are available at no cost through the American Diabetes Association (ADA) (9).

Preconception Care

Recommendations

14.4 Women with preexisting type 1 or type 2 diabetes who are planning pregnancy or who have become pregnant should be counseled on the risk of development and/or progression of diabetic retinopathy. Dilated eye examinations should occur ideally before pregnancy or in the first trimester, and then patients should be monitored every trimester and for 1-year postpartum as indicated by the degree of retinopathy and as recommended by the eye care provider.

14.5 Women with preexisting diabetes should ideally be managed in a multidisciplinary clinic including an endocrinologist, maternal-fetal medicine specialist, dietitian, and diabetes educator, when available.

Preconception visits should include rubella, syphilis, hepatitis B virus, and HIV testing, as well as Pap test, cervical cultures, blood typing, prescription of prenatal vitamins (with at least 400 mg of folic acid), and smoking cessation counseling if indicated. Diabetes-specific testing should include A1C, thyroid-stimulating hormone, creatinine, and urinary albumin-to-creatinine ratio; review of the medication list for potentially teratogenic drugs, i.e., ACE inhibitors (10), angiotensin receptor blockers (10), and statins (11,12); and referral for a comprehensive eye exam. Women with preexisting diabetic retinopathy will need close monitoring during pregnancy to ensure that retinopathy does not progress (13). Preconception counseling should include an explanation of the risks to mother and fetus related to pregnancy and the ways to reduce risk and include glycemic goal setting, lifestyle management, and medical nutrition therapy.

Several studies have shown improved diabetes and pregnancy outcomes when care has been delivered from preconception through pregnancy by a multidisciplinary group focused on improved glycemic control (14–16). One study showed that care of preexisting diabetes in clinics that included diabetes and obstetric specialists improved care (17). However, there is no consensus on the structure of multidisciplinary team care for diabetes and pregnancy, and there is a lack of evidence on the impact on outcomes of various methods of health care delivery (18).

GLYCEMIC TARGETS IN PREGNANCY

Recommendations

14.6 Fasting and postprandial self-monitoring of blood glucose are recommended in both gestational diabetes mellitus and pre-existing diabetes in pregnancy to achieve glycemic control. Some women with preexisting diabetes should also test blood glucose preprandially.

14.7 Due to increased red blood cell turnover, A1C is slightly lower in normal pregnancy than in normal nonpregnant women. Ideally, the A1C target in pregnancy is <6% (42 mmol/mol) if this can be achieved without significant hypoglycemia, but the target may be relaxed to <7% (53 mmol/mol) if necessary to prevent hypoglycemia.

Pregnancy in women with normal glucose metabolism is characterized by fasting levels of blood glucose that are lower than in the nonpregnant state due to insulin-independent glucose uptake by the fetus and placenta and by postprandial hyperglycemia and carbohydrate intolerance as a result of diabetogenic placental hormones. In patients with preexisting diabetes, glycemic targets are usually achieved through a combination of insulin administration and medical nutrition therapy. Because glycemic targets in pregnancy are stricter than in nonpregnant individuals, it is important that women with diabetes eat consistent amounts of carbohydrates to match with insulin dosage and to avoid hyperglycemia or hypoglycemia. Referral to a registered dietitian is important in order to establish a food plan and insulin-to-carbohydrate ratio and to determine weight gain goals.

Insulin Physiology

Early pregnancy is a time of enhanced insulin sensitivity, lower glucose levels, and lower insulin requirements in women with type 1 diabetes. The situation rapidly reverses as insulin resistance increases exponentially during the second and early third trimesters and levels off toward the end of the third trimester. In women with normal pancreatic function, insulin production is sufficient to meet the challenge of this physiological insulin resistance and to maintain normal glucose levels. However, in women with GDM or preexisting diabetes, hyperglycemia occurs if treatment is not adjusted appropriately.

Glucose Monitoring

Reflecting this physiology, fasting and postprandial monitoring of blood glucose
is recommended to achieve metabolic control in pregnant women with diabetes. Preprandial testing is also recommended for women with preexisting diabetes using insulin pumps or basal-bolus therapy, so that premeal rapid-acting insulin dosage can be adjusted. Postprandial monitoring is associated with better glycemic control and lower risk of preeclampsia (19–21). There are no adequately powered randomized trials comparing different fasting and post-meal glycemic targets in diabetes in pregnancy.

Similar to the targets recommended by the American College of Obstetricians and Gynecologists (the same as for GDM; described below) (22), the ADA-recommended targets for women with type 1 or type 2 diabetes are as follows:

- Fasting <95 mg/dL (5.3 mmol/L) and either
- One-hour postprandial <140 mg/dL (7.8 mmol/L) or
- Two-hour postprandial <120 mg/dL (6.7 mmol/L)

These values represent optimal control if they can be achieved safely. In practice, it may be challenging for women with type 1 diabetes to achieve these targets without hypoglycemia, particularly women with a history of recurrent hypoglycemia or hypoglycemia unawareness.

If women cannot achieve these targets without significant hypoglycemia, the ADA suggests less stringent targets based on clinical experience and individualization of care.

A1C in Pregnancy

In studies of women without preexisting diabetes, increasing A1C levels within the normal range is associated with adverse outcomes (23). In the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study, increasing levels of glycemia were associated with worsening outcomes (24). Observational studies in preexisting diabetes and pregnancy show the lowest rates of adverse fetal outcomes in association with A1C <6–6.5% (42–48 mmol/mol) early in gestation (4–6,25). Clinical trials have not evaluated the risks and benefits of achieving these targets, and treatment goals should account for the risk of maternal hypoglycemia in setting an individualized target of <6% (42 mmol/mol) to <7% (53 mmol/mol). Due to physiological increases in red blood cell turnover, A1C levels fall during normal pregnancy (26,27). Additionally, as A1C represents an integrated measure of glucose, it may not fully capture postprandial hyperglycemia, which drives macrosomia. Thus, although A1C may be useful, it should be used as a secondary measure of glycemic control in pregnancy, after self-monitoring of blood glucose.

In the second and third trimesters, A1C <6% (42 mmol/mol) has the lowest risk of large-for-gestational-age infants (25,28,29), preterm delivery (30), and preeclampsia (1,31). Taking all of this into account, a target of <6% (42 mmol/mol) is optimal during pregnancy if it can be achieved without significant hypoglycemia. The A1C target in a given patient should be achieved without hypoglycemia, which, in addition to the usual adverse sequelae, may increase the risk of low birth weight (32). Given the alteration in red blood cell kinetics during pregnancy and physiological changes in glycemic parameters, A1C levels may need to be monitored more frequently than usual (e.g., monthly).

**GDM is characterized by increased risk of macrosomia and birth complications and an increased risk of maternal type 2 diabetes after pregnancy. The association of macrosomia and birth complications with oral glucose tolerance test (OGTT) results is continuous with no clear inflection points (24). In other words, risks increase with progressive hyperglycemia. Therefore, all women should be tested as outlined in Section 2 “Classification and Diagnosis of Diabetes.” Although there is some heterogeneity, many randomized controlled trials (RCTs) suggest that the risk of GDM may be reduced by diet, exercise, and lifestyle counseling, particularly when interventions are started during the first or early in the second trimester (33–35).

Lifestyle Management

After diagnosis, treatment starts with medical nutrition therapy, physical activity, and weight management depending on pregestational weight, as outlined in the section below on preexisting type 2 diabetes, and glucose monitoring aiming for the targets recommended by the Fifth International Workshop-Conference on Gestational Diabetes Mellitus (36):

- Fasting <95 mg/dL (5.3 mmol/L) and either
- One-hour postprandial <140 mg/dL (7.8 mmol/L) or
- Two-hour postprandial <120 mg/dL (6.7 mmol/L)

Depending on the population, studies suggest that 70–85% of women diagnosed with GDM under Carpenter-Coustan or National Diabetes Data Group (NDDG) criteria can control GDM with lifestyle modification alone; it is anticipated that this proportion will be even higher if the lower International Association of Diabetes and Pregnancy Study Groups (IADPSG) (37) diagnostic thresholds are used.

Medical Nutrition Therapy

Medical nutrition therapy for GDM is an individualized nutrition plan developed between the woman and a registered dietitian familiar with the management of GDM (38,39). The food plan should provide adequate calorie intake to promote fetal/neonatal and maternal health, achieve glycemic goals, and promote appropriate gestational weight...
gain. There is no definitive research that identifies a specific optimal calorie intake for women with GDM or suggests that their calorie needs are different from those of pregnant women without GDM. The food plan should be based on a nutrition assessment with guidance from the Dietary Reference Intakes (DRI). The DRI for all pregnant women recommends a minimum of 175 g of carbohydrate, a minimum of 71 g of protein, and 28 g of fiber. As is true for all nutrition therapy in patients with diabetes, the amount and type of carbohydrate will impact glucose levels, especially postmeal excursions.

Pharmacologic Therapy

Treatment of GDM with lifestyle and insulin has been demonstrated to improve perinatal outcomes in two large randomized studies as summarized in a U.S. Preventive Services Task Force review (40). Insulin is the first-line agent recommended for treatment of GDM in the U.S. While individual RCTs support limited efficacy of metformin (41,42) and glyburide (43) in reducing glucose levels for the treatment of GDM, these agents are not recommended as first-line treatment for GDM because they are known to cross the placenta and data on safety for offspring is lacking (22). Furthermore, in two RCTs, glyburide and metformin failed to provide adequate glycemic control in 23% and 25–28%, respectively (44,45), of women with GDM.

Sulfonylureas

Sulfonylureas are known to cross the placenta and have been associated with increased neonatal hypoglycemia. Concentrations of glyburide in umbilical cord plasma are approximately 70% of maternal levels (44,45). Glyburide was associated with a higher rate of neonatal hypoglycemia and macrosomia than insulin or metformin in a 2015 meta-analysis and systematic review (46). More recently, glyburide failed to be found noninferior to insulin based on a composite outcome of neonatal hypoglycemia, macrosomia, and hyperbilirubinemia. Long-term safety data for offspring are not available (47,48).

Metformin

Metformin was associated with a lower risk of neonatal hypoglycemia and less maternal weight gain than insulin in systematic reviews (46,49,50); however, metformin may slightly increase the risk of prematurity. Like glyburide, metformin crosses the placenta, and umbilical cord blood levels of metformin are higher than simultaneous maternal levels (51,52). In the Metformin in Gestational Diabetes: The Offspring Follow-Up (MIG TOFU) study’s analyses of 7- to 9-year-old offspring, 9-year-old offspring exposed to metformin for the treatment of GDM were larger (based on a number of measurements) than those exposed to insulin (53). In two RCTs of metformin use in pregnancy for polycystic ovary syndrome, follow-up of 4-year-old offspring demonstrated higher BMI and increased obesity in the offspring exposed to metformin (53,54). Further study of long-term outcomes in the offspring is needed (53,54).

Randomized, double-blind, controlled trials comparing metformin with other therapies for ovulation induction in women with polycystic ovary syndrome have not demonstrated benefit in preventing spontaneous abortion or GDM (55), and there is no evidence-based need to continue metformin in such patients once pregnancy has been confirmed (56–58).

Insulin

Insulin use should follow the guidelines below. Both multiple daily insulin injections and continuous subcutaneous insulin infusion are reasonable delivery strategies, and neither has been shown to be superior during pregnancy (59).

MANAGEMENT OF PREEXISTING TYPE 1 DIABETES AND TYPE 2 DIABETES IN PREGNANCY

Insulin Use

Recommendation

14.11 Insulin is the preferred agent for management of both type 1 diabetes and type 2 diabetes in pregnancy because it does not cross the placenta and because oral agents are generally insufficient to overcome the insulin resistance in type 2 diabetes and are ineffective in type 1 diabetes. E

The physiology of pregnancy necessitates frequent titration of insulin to match changing requirements and underscores the importance of daily and frequent self-monitoring of blood glucose. Early in the first trimester, there is an increase in insulin requirements, followed by a decrease in weeks 9 through 16 (60). Women, particularly those with type 1 diabetes, may experience increased hypoglycemia. After 16 weeks, rapidly increasing insulin resistance requires weekly increases in insulin dose of about 5% per week to achieve glycemic targets. There is roughly a doubling of insulin requirements by the late third trimester. In general, a smaller proportion of the total daily dose should be given as basal insulin (<50%) and a greater proportion (>50%) as prandial insulin. Late in the third trimester, there is often a leveling off or small decrease in insulin requirements. Due to the complexity of insulin management in pregnancy, referral to a specialized center offering team-based care (with team members including maternal-fetal medicine specialist, endocrinologist, or other provider experienced in managing pregnancy in women with preexistence diabetes, dietitian, nurse, and social worker, as needed) is recommended if this resource is available.

None of the currently available human insulin preparations have been demonstrated to cross the placenta (61–66).

A recent Cochrane systematic review was not able to recommend any specific insulin regimen over another for the treatment of diabetes in pregnancy (67).

Preeclampsia and Aspirin

Recommendation

14.12 Women with type 1 or type 2 diabetes should be prescribed low-dose aspirin 60–150 mg/day (usual dose 81 mg/day) from the end of the first trimester until the baby is born in order to lower the risk of preeclampsia. A

Diabetes in pregnancy is associated with an increased risk of preeclampsia (68). Based upon the results of clinical trials, the U.S. Preventive Services Task Force recommends the use of low-dose aspirin (81 mg/day) as a preventive medication after 12 weeks of gestation in women who are at high risk for preeclampsia (69). A cost-benefit analysis
In pregnant patients with diabetes and chronic hypertension, blood pressure targets of 120-160/80-105 mmHg are suggested in the interest of optimizing long-term maternal health and minimizing impaired fetal growth. E

14.14 Potentially teratogenic medications (i.e., ACE inhibitors, angiotensin receptor blockers, statins) should be avoided in sexually active women of childbearing age who are not using reliable contraception. B

PREGNANCY AND DRUG CONSIDERATIONS

In normal pregnancy, blood pressure is lower than in the nonpregnant state. In a pregnancy complicated by diabetes and chronic hypertension, target goals for systolic blood pressure 120-160 mmHg and diastolic blood pressure 80-105 mmHg are reasonable (75). Lower blood pressure levels may be associated with impaired fetal growth. In a 2015 study targeting diastolic blood pressure of 100 mmHg versus 85 mmHg in pregnant women, only 6% of whom had GDM at enrollment, there was no difference in pregnancy loss, neonatal care, or other neonatal outcomes, although women in the less intensive treatment group had a higher rate of uncontrolled hypertension (76).

During pregnancy, treatment with ACE inhibitors and angiotensin receptor blockers is contraindicated because they may cause fetal renal dysplasia, oligohydramnios, and intrauterine growth restriction (10). Antihypertensive drugs known to be effective and safe in pregnancy include methyldopa, nifedipine, labetalol, diltiazem, clonidine, and prazosin. Atenolol is not recommended. Chronic diuretic use during pregnancy is not recommended as it has been associated with restricted maternal plasma volume, which may reduce uteroplacental perfusion (77). On the basis of available evidence, statins should also be avoided in pregnancy (78).

Please see pregnancy and antihypertensive medications in Section 10 “Cardiovascular Disease and Risk Management” for more information on managing blood pressure in pregnancy.

POSTPARTUM CARE

Postpartum care should include psychosocial assessment and support for self-care.

Lactation

In light of the immediate nutritional and immunological benefits of breastfeeding for the baby, all women including those with diabetes should be supported in attempts to breastfeed. Breastfeeding may also confer longer-term metabolic benefits to both mother (79) and offspring (80).

Gestational Diabetes Mellitus

Initial Testing

Because GDM may represent preexisting undiagnosed type 2 or even type 1 diabetes, women with GDM should be tested for persistent diabetes or prediabetes at 4–12 weeks postpartum with a 75-g OGTT using nonpregnancy criteria as outlined in Section 2 “Classification and Diagnosis of Diabetes.”

Postpartum Follow-up

The OGTT is recommended over A1C at the time of the 4- to 12-week postpartum visit because A1C may be persistently impacted (lowered) by the increased red blood cell turnover related to pregnancy or blood loss at delivery and because the OGTT is more sensitive at detecting glucose intolerance, including both prediabetes and diabetes. Reproductive-aged women with prediabetes may develop type 2 diabetes by the time of their next pregnancy and will need preconception evaluation. Because GDM is associated with an increased lifetime maternal risk for diabetes estimated at 50–70% after 15–25 years (81,82), women should also be tested every 1–3 years thereafter if the 4- to 12-week postpartum 75-g OGTT is normal, with frequency of testing depending on other risk factors including family history,
pregnancy is critical in women with pre-existing diabetes due to the need for preconception glycemic control to prevent congenital malformations and reduce the risk of other complications. Therefore, all women with diabetes of childbearing potential should have family planning options reviewed at regular intervals. This applies to women in the immediate postpartum period. Women with diabetes have the same contraception options and recommendations as those without diabetes. The risk of an unplanned pregnancy outweighs the risk of any given contraception option.

References
25. Mares MIA, Holmes VA, Patterson CC, et al.; Diabetes and Pre-eclampsia Intervention Trial Study Group. Glycemic targets in the second and
Management of Diabetes in Pregnancy

15. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes—2019

The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

In the hospital, both hyperglycemia and hypoglycemia are associated with adverse outcomes, including death (1,2). Therefore, inpatient goals should include the prevention of both hyperglycemia and hypoglycemia. Hospitals should promote the shortest safe hospital stay and provide an effective transition out of the hospital that prevents acute complications and readmission.

For in-depth review of inpatient hospital practice, consult recent reviews that focus on hospital care for diabetes (3,4).

HOSPITAL CARE DELIVERY STANDARDS

Recommendation 15.1 Perform an A1C on all patients with diabetes or hyperglycemia (blood glucose ≥140 mg/dL [7.8 mmol/L]) admitted to the hospital if not performed in the prior 3 months. B

High-quality hospital care for diabetes requires both hospital care delivery standards, often assured by structured order sets, and quality assurance standards for process improvement. “Best practice” protocols, reviews, and guidelines (2) are inconsistently implemented within hospitals. To correct this, hospitals have established protocols for structured patient care and structured order sets, which include computerized physician order entry (CPOE).

Considerations on Admission
Initial orders should state the type of diabetes (i.e., type 1 or type 2 diabetes) or no previous history of diabetes. Because inpatient insulin use (5) and discharge orders (6) can be more effective if based on an A1C level on admission (7), perform an A1C test on all patients with diabetes or hyperglycemia admitted to the hospital if the test has not been performed in the prior 3 months (8). In addition, diabetes self-management knowledge and behaviors should be assessed on admission and
diabetes self-management education should be provided, if appropriate. Diabetes self-management education should include appropriate skills needed after discharge, such as taking antihyperglycemic medications, monitoring glucose, and recognizing and treating hypoglycemia (2).

Physician Order Entry

Recommendation 15.2 Insulin should be administered using validated written or computerized protocols that allow for predefined adjustments in the insulin dosage based on glycemic fluctuations. E

The National Academy of Medicine recommends CPOE to prevent medication-related errors and to increase efficiency in medication administration (9). A Cochrane review of randomized controlled trials using computerized advice to improve glucose control in the hospital found significant improvement in the percentage of time patients spent in the target glucose range, lower mean blood glucose levels, and no increase in hypoglycemia (10). Thus, where feasible, there should be structured order sets that provide computerized advice for glucose control. Electronic insulin order templates also improve mean glucose levels without increasing hypoglycemia in patients with type 2 diabetes, so structured insulin order sets should be incorporated into the CPOE (11).

Diabetes Care Providers in the Hospital

Recommendation 15.3 When caring for hospitalized patients with diabetes, consider consulting with a specialized diabetes or glucose management team where possible. E

 Appropriately trained specialists or specialty teams may reduce length of stay, improve glycemic control, and improve outcomes, but studies are few (12,13). A call to action outlined the studies needed to evaluate these outcomes (14). People with diabetes are known to have a higher risk of 30-day readmission following hospitalization. Specialized diabetes teams caring for patients with diabetes during their hospital stay can improve readmission rates and lower cost of care (15,16).

Early evidence suggests that virtual glucose management services may be used to improve glycemic outcomes in hospitalized patients and facilitate transition of care after discharge (17). Details of team formation are available from the Joint Commission standards for programs and the Society of Hospital Medicine (18,19).

Quality Assurance Standards

Recommendation 15.4 Insulin therapy should be initiated for treatment of persistent hyperglycemia starting at a threshold ≥180 mg/dL (10.0 mmol/L). Once insulin therapy is started, a target glucose range of 140–180 mg/dL (7.8–10.0 mmol/L) is recommended for the majority of critically ill patients and noncritically ill patients. A

Recommendation 15.5 More stringent goals, such as 110–140 mg/dL (6.1–7.8 mmol/L), may be appropriate for selected patients, if this can be achieved without significant hypoglycemia. C

Recommendations

Table 15.1—Levels of hypoglycemia

<table>
<thead>
<tr>
<th>Level</th>
<th>Glycemic criteria/description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>Glucose <70 mg/dL (3.9 mmol/L) and glucose ≥54 mg/dL (3.0 mmol/L)</td>
</tr>
<tr>
<td>Level 2</td>
<td>Glucose <54 mg/dL (3.0 mmol/L)</td>
</tr>
<tr>
<td>Level 3</td>
<td>A severe event characterized by altered mental and/or physical status requiring assistance</td>
</tr>
</tbody>
</table>

Even the best orders may not be carried out in a way that improves quality, nor are they automatically updated when new evidence arises. To this end, the Joint Commission has an accreditation program for the hospital care of diabetes (18), and the Society of Hospital Medicine has a workbook for program development (19).

GLYCEMIC TARGETS IN HOSPITALIZED PATIENTS

Standard Definition of Glucose Abnormalities

Hyperglycemia in hospitalized patients is defined as blood glucose levels >140 mg/dL (7.8 mmol/L) (2,20). Blood glucose levels that are persistently above this level may require alterations in diet or a change in medications that cause hyperglycemia. An admission A1C value ≥6.5% (48 mmol/mol) suggests that diabetes preceded hospitalization (see Section 2 “Classification and Diagnosis of Diabetes”) (2,20). Level 1 hypoglycemia in hospitalized patients is defined as a measurable glucose concentration <70 mg/dL (3.9 mmol/L) but ≥54 mg/dL (3.0 mmol/L). Level 2 hypoglycemia (defined as a blood glucose concentration <54 mg/dL [3.0 mmol/L]) is the threshold at which neuroglycopenic symptoms begin to occur and requires immediate action to resolve the hypoglycemic event. Lastly, level 3 hypoglycemia is defined as a severe event characterized by altered mental and/or physical functioning that requires assistance from another person for recovery. See Table 15.1 for levels of hypoglycemia (21). Hypoglycemia is discussed more fully below.

Moderate Versus Tight Glycemic Control

A meta-analysis of over 26 studies, including the Normoglycemia in Intensive Care Evaluation—Survival Using Glucose Algorithm Regulation (NICE-SUGAR) study, showed increased rates of “severe hypoglycemia” (defined in the analysis as blood glucose <40 mg/dL [2.2 mmol/L]) and mortality in cohorts with tight versus moderate glycemic control (22). Recent randomized controlled studies and meta-analyses in surgical patients have also reported that targeting perioperative blood glucose levels to <180 mg/dL (10.0 mmol/L) is associated with lower rates of mortality and stroke compared with a target glucose <200 mg/dL (11.1 mmol/L), whereas no significant additional benefit was found with more strict glycemic control (<140 mg/dL [7.8 mmol/L]) (23,24). Insulin therapy should be initiated for treatment of persistent hyperglycemia starting at a threshold ≥180 mg/dL (10.0 mmol/L). Once insulin therapy is started, a target glucose range of 140–180 mg/dL (7.8–10.0 mmol/L) is recommended for the majority of critically ill and noncritically ill patients (2). More stringent goals, such as <140 mg/dL (7.8 mmol/L), may be appropriate for selected patients, as long as this can be achieved without significant hypoglycemia. Conversely, higher glucose ranges may be acceptable in terminally ill patients.
in patients with severe comorbidities, and in inpatient care settings where frequent glucose monitoring or close nursing supervision is not feasible.

Clinical judgment combined with ongoing assessment of the patient’s clinical status, including changes in the trajectory of glucose measures, illness severity, nutritional status, or concomitant medications that might affect glucose levels (e.g., glucocorticoids), should be incorporated into the day-to-day decisions regarding insulin dosing (2).

BEDSIDE BLOOD GLUCOSE MONITORING

Indications
In the patient who is eating meals, glucose monitoring should be performed before meals. In the patient who is not eating, glucose monitoring is advised every 4–6 h (2). More frequent blood glucose testing ranging from every 30 min to every 2 h is required for patients receiving intravenous insulin. Observational studies have shown that safety standards should be established for blood glucose monitoring that prohibit the sharing of fingerstick lancing devices, lancets, and needles (25).

Point-of-Care Meters
Point-of-care (POC) meters have limitations for measuring blood glucose. Although the U.S. Food and Drug Administration (FDA) has standards for blood glucose meters used by lay persons, there have been questions about the appropriateness of these criteria, especially in the hospital and for lower blood glucose readings (26). Significant discrepancies between capillary, venous, and arterial plasma samples have been observed in patients with low or high hemoglobin concentrations and with hypoperfusion. Any glucose result that does not correlate with the patient’s clinical status should be confirmed through conventional laboratory glucose tests. The FDA established a separate category for POC glucose meters for use in health care settings and has released guidance on in-hospital use with stricter standards (27). Before choosing a device for in-hospital use, consider the device’s approval status and accuracy.

Continuous Glucose Monitoring
Real-time continuous glucose monitoring (CGM) provides frequent measurements of interstitial glucose levels, as well as direction and magnitude of glucose trends, which may have an advantage over POC glucose testing in detecting and reducing the incidence of hypoglycemia in the hospital setting (28,29). Several inpatient studies have shown that CGM use did not improve glucose control but detected a greater number of hypoglycemic events than POC testing (30,31). However, a recent review has recommended against using CGM in adults in a hospital setting until more safety and efficacy data become available (30). For more information on CGM, see Section 7 “Diabetes Technology.”

ANTIHYPERGLYCEMIC AGENTS IN HOSPITALIZED PATIENTS

Recommendations
15.6 Basal insulin or a basal plus bolus correction insulin regimen is the preferred treatment for noncritically ill hospitalized patients with poor oral intake or those who are taking nothing by mouth. An insulin regimen with basal, prandial, and correction components is the preferred treatment for noncritically ill hospitalized patients with good nutritional intake. A

15.7 Sole use of sliding scale insulin in the inpatient hospital setting is strongly discouraged. A

In most instances in the hospital setting, insulin is the preferred treatment for hyperglycemia (2). However, in certain circumstances, it may be appropriate to continue home regimens including oral antihyperglycemic medications (32). If oral medications are held in the hospital, there should be a protocol for resuming them 1–2 days before discharge. Insulin pens are the subject of an FDA warning because of potential blood-borne diseases, and care should be taken to follow the label insert “For single patient use only” (33). Recent reports, however, have indicated that the inpatient use of insulin pens appears to be safe and may be associated with improved nurse satisfaction compared with the use of insulin vials and syringes (34–36).

Insulin Therapy

Critical Care Setting
In the critical care setting, continuous intravenous insulin infusion has been shown to be the best method for achieving glycemic targets. Intravenous insulin infusions should be administered based on validated written or computerized protocols that allow for predefined adjustments in the infusion rate, accounting for glycemic fluctuations and insulin dose (2).

Noncritical Care Setting
Outside of critical care units, scheduled insulin regimens are recommended to manage hyperglycemia in patients with diabetes. Regimens using insulin analogs and human insulin result in similar glycemic control in the hospital setting (37).

The use of subcutaneous rapid- or short-acting insulin before meals or every 4–6 h if no meals are given or if the patient is receiving continuous enteral/parenteral nutrition is indicated to correct hyperglycemia (2). Basal insulin or a basal plus bolus correction insulin regimen is the preferred treatment for noncritically ill hospitalized patients with poor oral intake or those who are taking nothing by mouth (NPO). An insulin regimen with basal, prandial, and correction components is the preferred treatment for noncritically ill hospitalized patients with good nutritional intake.

If the patient is eating, insulin injections should align with meals. In such instances, POC glucose testing should be performed immediately before meals. If oral intake is poor, a safer procedure is to administer the rapid-acting insulin immediately after the patient eats or to count the carbohydrates and cover the amount ingested (37).

A randomized controlled trial has shown that basal-bolus treatment improved glycemic control and reduced hospital complications compared with sliding scale insulin in general surgery patients with type 2 diabetes (38). Prolonged sole use of sliding scale insulin in the inpatient hospital setting is strongly discouraged (2,14).

While there is evidence for using premixed insulin formulations in the outpatient setting (39), a recent inpatient study of 70/30 NPH/regular insulin versus basal-bolus therapy showed comparable glycemic control but significantly increased hypoglycemia in the group receiving premixed insulin (40). Therefore, premixed insulin regimens are not routinely recommended for in-hospital use.
Type 1 Diabetes

For patients with type 1 diabetes, dosing insulin based solely on premeal glucose levels does not account for basal insulin requirements or caloric intake, increasing both hypoglycemia and hyperglycemia risks. Typically, basal insulin dosing schemes are based on body weight, with some evidence that patients with renal insufficiency should be treated with lower doses (41). An insulin regimen with basal and correction components is necessary for all hospitalized patients with type 1 diabetes, with the addition of prandial insulin if the patient is eating.

Transitions to Intravenous to Subcutaneous Insulin

When discontinuing intravenous insulin, a transition protocol is associated with less morbidity and lower costs of care (42) and is therefore recommended. A patient with type 1 or type 2 diabetes being transitioned to outpatient subcutaneous insulin should receive subcutaneous basal insulin 2–4 h before the intravenous insulin is discontinued. Converting to basal insulin at 60–80% of the daily infusion dose has been shown to be effective (2,42,43). For patients continuing regimens with concentrated insulin (U-200, U-300, or U-500) in the inpatient setting, it is important to ensure the correct dosing by utilizing an individual pen and cartridge for each patient, meticulous pharmacist supervision of the dose administered, or other means (44,45).

Noninsulin Therapies

The safety and efficacy of noninsulin antihyperglycemic therapies in the hospital setting is an area of active research. A few recent randomized pilot trials in general medicine and surgery patients reported that a dipeptidyl peptidase 4 inhibitor alone or in combination with basal insulin was well tolerated and resulted in similar glucose control and frequency of hypoglycemia compared with a basal-bolus regimen (46–48). However, an FDA bulletin states that providers should consider discontinuing saxagliptin and alogliptin in people who develop heart failure (49). A review of antihyperglycemic medications concluded that glucagon-like peptide 1 receptor agonists show promise in the inpatient setting (50); however, proof of safety and efficacy awaits the results of randomized controlled trials (51). Moreover, the gastrointestinal symptoms associated with the glucagon-like peptide 1 receptor agonists may be problematic in the inpatient setting.

Regarding the sodium–glucose transporter 2 (SGLT2) inhibitors, the FDA includes warnings about diabetic ketoacidosis (DKA) and urosepsis (52), urinary tract infections, and kidney injury (53) on the drug labels. A recent review suggested SGLT2 inhibitors be avoided in severe illness, when ketone bodies are present, and during prolonged fasting and surgical procedures (3). Until safety and effectiveness are established, SGLT2 inhibitors cannot be recommended for routine in-hospital use.

HYPOGLYCEMIA

Recommendations

15.8 A hypoglycemia management protocol should be adopted and implemented by each hospital or hospital system. A plan for preventing and treating hypoglycemia should be established for each patient. Episodes of hypoglycemia in the hospital should be documented in the medical record and tracked.

15.9 The treatment regimen should be reviewed and changed as necessary to prevent further hypoglycemia when a blood glucose value of <70 mg/dL (3.9 mmol/L) is documented.

Patients with or without diabetes may experience hypoglycemia in the hospital setting. While hypoglycemia is associated with increased mortality (54), hypoglycemia may be a marker of underlying disease rather than the cause of increased mortality. However, until it is proven not to be causal, it is prudent to avoid hypoglycemia. Despite the preventable nature of many inpatient episodes of hypoglycemia, institutions are more likely to have nursing protocols for hypoglycemia treatment than for its prevention when both are needed. A hypoglycemia prevention and management protocol should be adopted and implemented by each hospital or hospital system. There should be a standardized hospital-wide, nurse-initiated hypoglycemia treatment protocol to immediately address blood glucose levels of <70 mg/dL (3.9 mmol/L), as well as individualized plans for preventing and treating hypoglycemia for each patient. An American Diabetes Association (ADA) consensus report suggested that a patient's overall treatment regimen be reviewed when a blood glucose value of <70 mg/dL (3.9 mmol/L) is identified because such readings often predict imminent level 3 hypoglycemia (2).

Episodes of hypoglycemia in the hospital should be documented in the medical record and tracked (2).

Triggering Events

Iatrogenic hypoglycemia triggers may include sudden reduction of corticosteroid dose, reduced oral intake, emesis, new NPO status, inappropriate timing of short- or rapid-acting insulin in relation to meals, reduced infusion rate of intravenous dextrose, unexpected interruption of oral, enteral, or parenteral feedings, and altered ability of the patient to report symptoms (3).

Predictors of Hypoglycemia

In one study, 84% of patients with an episode of “severe hypoglycemia” (defined as <40 mg/dL [2.2 mmol/L]) had a prior episode of hypoglycemia (<70 mg/dL [3.9 mmol/L]) during the same admission (55). In another study of hypoglycemic episodes (defined as <50 mg/dL [2.8 mmol/L]), 78% of patients were using basal insulin, with the incidence of hypoglycemia peaking between midnight and 6 A.M. Despite recognition of hypoglycemia, 75% of patients did not have their dose of basal insulin changed before the next insulin administration (56).

Prevention

Common preventable sources of iatrogenic hypoglycemia are improper prescribing of hypoglycemic medications, inappropriate management of the first episode of hypoglycemia, and nutrition–insulin mismatch, often related to an unexpected interruption of nutrition. Studies of “bundled” preventative therapies including proactive surveillance of glycemic outliers and an interdisciplinary data-driven approach to glycemic management showed that hypoglycemic episodes in the hospital could be prevented. Compared with baseline, two such studies found that hypoglycemic events fell by 56% to 80% (57,58). The Joint Commission recommends that all hypoglycemic episodes be evaluated for a root
cause and the episodes be aggregated and reviewed to address systemic issues.

MEDICAL NUTRITION THERAPY IN THE HOSPITAL

The goals of medical nutrition therapy in the hospital are to provide adequate calories to meet metabolic demands, optimize glycemic control, address personal food preferences, and facilitate creation of a discharge plan. The ADA does not endorse any single meal plan or specified percentages of macronutrients. Current nutrition recommendations advise individualization based on treatment goals, physiological parameters, and medication use. Consistent carbohydrate meal plans are preferred by many hospitals as they facilitate matching the prandial insulin dose to the amount of carbohydrate consumed (59). Regarding enteral nutritional therapy, diabetes-specific formulas appear to be superior to standard formulas in controlling postprandial glucose, A1C, and the insulin response (60).

When the nutritional issues in the hospital are complex, a registered dietitian, knowledgeable and skilled in medical nutrition therapy, can serve as an individual inpatient team member. That person should be responsible for integrating information about the patient’s clinical condition, meal planning, and lifestyle habits and for establishing realistic treatment goals after discharge. Orders should also indicate that the meal delivery and nutritional insulin coverage should be coordinated, as their variability often creates the possibility of hyperglycemic and hypoglycemic events.

SELF-MANAGEMENT IN THE HOSPITAL

Diabetes self-management in the hospital may be appropriate for select youth and adult patients (61,62). Candidates include patients who successfully conduct self-management of diabetes at home, have the cognitive and physical skills needed to successfully self-administer insulin, and perform self-monitoring of blood glucose. In addition, they should have adequate oral intake, be proficient in carbohydrate estimation, use multiple daily insulin injections or continuous subcutaneous insulin infusion (CSII), have stable insulin requirements, and understand sick-day management. If self-management is to be used, a protocol should include a requirement that the patient, nursing staff, and physician agree that patient self-management is appropriate. If CSII is to be used, hospital policy and procedures delineating guidelines for CSII therapy, including the changing of infusion sets, are advised (63).

STANDARDS FOR SPECIAL SITUATIONS

Enteral/Parenteral Feedings

For patients receiving enteral or parenteral feedings who require insulin, insulin should be divided into basal, prandial, and correctional components. This is particularly important for people with type 1 diabetes to ensure that they continue to receive basal insulin even if the feedings are discontinued. One may use the patient’s preadmission basal insulin dose or a percentage of the total daily dose of insulin when the patient is being fed (usually 30–50% of the total daily dose of insulin) to estimate basal insulin requirements. However, if no basal insulin was used, consider using 5 units of NPH/detemir insulin subcutaneously every 12 h or 10 units of insulin glargine every 24 h (64). For patients receiving continuous tube feedings, the total daily nutritional component may be calculated as 1 unit of insulin for every 10–15 g carbohydrate per day or as a percentage of the total daily dose of insulin when the patient is being fed (usually 50–70% of the total daily dose of insulin). Correctional insulin should also be administered subcutaneously every 6 h using human regular insulin or every 4 h using a rapid-acting insulin such as lispro, aspart, or glulisine. For patients receiving enteral bolus feedings, approximately 1 unit of regular human insulin or rapid-acting insulin per 10–15 g carbohydrate should be given subcutaneously before each feeding. Correctional insulin coverage should be added as needed before each feeding. For patients receiving continuous peripheral or central parenteral nutrition, human regular insulin may be added to the solution, particularly if >20 units of correctional insulin have been required in the past 24 h. A starting dose of 1 unit of human regular insulin for every 10 g dextrose has been recommended (65), to be adjusted daily in the solution. Correctional insulin should be administered subcutaneously. For full enteral/parenteral feeding guidance, the reader is encouraged to consult review articles detailing this topic (2,66).

Glucocorticoid Therapy

Glucocorticoid type and duration of action must be considered in determining insulin treatment regimens. Once-a-day, short-acting glucocorticoids such as prednisone peak in about 4–8 h (67), so coverage with intermediate-acting (NPH) insulin may be sufficient. For long-acting glucocorticoids such as dexamethasone or multidose or continuous glucocorticoid use, long-acting insulin may be used (32,66). For higher doses of glucocorticoids, increasing doses of prandial and correctional insulin may be needed in addition to basal insulin (68). Whatever orders are started, adjustments based on anticipated changes in glucocorticoid dosing and POC glucose test results are critical.

Perioperative Care

Many standards for perioperative care lack a robust evidence base. However, the following approach (69) may be considered:

1. Target glucose range for the perioperative period should be 80–180 mg/dL (4.4–10.0 mmol/L).
2. Perform a preoperative risk assessment for patients at high risk for ischemic heart disease and those with autonomic neuropathy or renal failure.
3. Withhold metformin the day of surgery.
4. Withhold any other oral hypoglycemic agents the morning of surgery or procedure and give half of NPH dose or 60–80% doses of long-acting analog or pump basal insulin.
5. Monitor blood glucose at least every 4–6 h while NPO and dose with short- or rapid-acting insulin as needed.

A review found that perioperative glycemic control tighter than 80–180 mg/dL (4.4–10.0 mmol/L) did not improve outcomes and was associated with more hypoglycemia (70); therefore, in general, tighter glycemic targets are not advised. A recent study reported that, compared with the usual insulin dose, on average an approximate 25% reduction in the insulin dose given the evening before surgery was more likely to achieve perioperative blood glucose...
levels in the target range with decreased risk for hypoglycemia (71).

In noncardiac general surgery patients, basal insulin plus premeal short- or rapid-acting insulin (basal-bolus) coverage has been associated with improved glycemic control and lower rates of perioperative complications compared with the traditional sliding scale regimen (short- or rapid-acting insulin coverage only with no basal insulin dosing) (38,72).

Diabetic Ketoacidosis and Hyperosmolar Hyperglycemic State

There is considerable variability in the presentation of DKA and hyperosmolar hyperglycemic state, ranging from euglycemia or mild hyperglycemia and acidosis to severe hyperglycemia, dehydration, and coma; therefore, treatment individualization based on a careful clinical and laboratory assessment is needed (73–76).

Management goals include restoration of circulatory volume and tissue perfusion, resolution of hyperglycemia, and correction of electrolyte imbalance and ketosis. It is also important to treat any correctable underlying cause of DKA such as sepsis.

In critically ill and mentally obtunded patients with DKA or hyperosmolar hyperglycemic state, continuous intravenous insulin is the standard of care. Successful transition of patients from intravenous to subcutaneous insulin requires administration of basal insulin 2–4 h prior to the intravenous insulin being stopped to prevent recurrence of ketoacidosis and rebound hyperglycemia (76). There is no significant difference in outcomes for intravenous human regular insulin versus subcutaneous rapid-acting analogs when combined with aggressive fluid management for treating mild or moderate DKA (77). Patients with uncomplicated DKA may sometimes be treated with subcutaneous insulin in the emergency department or step-down units (78), an approach that may be safer and more cost-effective than treatment with intravenous insulin (79). If subcutaneous administration is used, it is important to provide adequate fluid replacement, nurse training, frequent bedside testing, infection treatment if warranted, and appropriate follow-up to avoid recurrent DKA. Several studies have shown that the use of bicarbonate in patients with DKA made no difference in resolution of acidosis or time to discharge, and its use is generally not recommended (80). For further information regarding treatment, refer to recent in-depth reviews (3).

TRANSITION FROM THE ACUTE CARE SETTING

Recommendation 15.10 There should be a structured discharge plan tailored to the individual patient with diabetes. B

A structured discharge plan tailored to the individual patient may reduce length of hospital stay and readmission rates and increase patient satisfaction (81). Therefore, there should be a structured discharge plan tailored to each patient. Discharge planning should begin at admission and be updated as patient needs change.

Transition from the acute care setting is a risky time for all patients. Inpatients may be discharged to varied settings, including home (with or without visiting nurse services), assisted living, rehabilitation, or skilled nursing facilities. For the patient who is discharged to home or to assisted living, the optimal program will need to consider diabetes type and severity, effects of the patient’s illness on blood glucose levels, and the patient’s capacities and preferences. See Section 12 “Older Adults” for more information.

An outpatient follow-up visit with the primary care provider, endocrinologist, or diabetes educator within 1 month of discharge is advised for all patients having hyperglycemia in the hospital. If glycemic medications are changed or glucose control is not optimal at discharge, an earlier appointment (in 1–2 weeks) is preferred, and frequent contact may be needed to avoid hyperglycemia and hypoglycemia. A recently described discharge algorithm for glycemic medication adjustment based on admission A1C found that use of the algorithm to guide treatment decisions resulted in significant improvements in the average A1C after discharge (6). Therefore, if an A1C from the prior 3 months is unavailable, measuring the A1C in all patients with diabetes or hyperglycemia admitted to the hospital is recommended.

Clear communication with outpatient providers either directly or via hospital discharge summaries facilitates safe transitions to outpatient care. Providing information regarding the cause of hyperglycemia (or the plan for determining the cause), related complications and comorbidities, and recommended treatments can assist outpatient providers as they assume ongoing care.

The Agency for Healthcare Research and Quality (AHRQ) recommends that, at a minimum, discharge plans include the following (82):

Medication Reconciliation

- The patient’s medications must be cross-checked to ensure that no chronic medications were stopped and to ensure the safety of new prescriptions.
- Prescriptions for new or changed medication should be filled and reviewed with the patient and family at or before discharge.

Structured Discharge Communication

- Information on medication changes, pending tests and studies, and follow-up needs must be accurately and promptly communicated to outpatient physicians.
- Discharge summaries should be transmitted to the primary care provider as soon as possible after discharge.
- Appointment-keeping behavior is enhanced when the inpatient team schedules outpatient medical follow-up prior to discharge.

It is recommended that the following areas of knowledge be reviewed and addressed prior to hospital discharge:

- Identification of the health care provider who will provide diabetes care after discharge.
- Level of understanding related to the diabetes diagnosis, self-monitoring of blood glucose, home blood glucose goals, and when to call the provider.
- Definition, recognition, treatment, and prevention of hyperglycemia and hypoglycemia.
- Information on making healthy food choices at home and referral to an outpatient registered dietitian nutritionist to guide individualization of the meal plan, if needed.
- If relevant, when and how to take blood glucose–lowering medications, including insulin administration.
○ Sick-day management.
○ Proper use and disposal of needles and syringes.

It is important that patients be provided with appropriate durable medical equipment, medications, supplies (e.g., blood glucose test strips), and prescriptions along with appropriate education at the time of discharge in order to avoid a potentially dangerous hiatus in care.

PREVENTING ADMISSIONS AND READMISSIONS

Preventing Hypoglycemic Admissions in Older Adults

Insulin-treated patients 80 years of age or older are more than twice as likely to visit the emergency department and nearly five times as likely to be admitted for insulin-related hypoglycemia than those 45–64 years of age (83). However, older adults with type 2 diabetes in long-term care facilities taking either oral antihyperglycemic agents or basal insulin have similar glycemic control (84), suggesting that oral therapy may be used in place of insulin to lower the risk of hypoglycemia for some patients. In addition, many older adults with diabetes are over-treated (85), with half of those maintaining an A1C <7% (53 mmol/mol) being treated with insulin or a sulfonylurea, which are associated with hypoglycemia. To further lower the risk of hypoglycemia-related admissions in older adults, providers may, on an individual basis, relax A1C targets to 8% (64 mmol/mol) or 8.5% (69 mmol/mol) in patients with shortened life expectancies and significant comorbidities (refer to Section 12 “Older Adults” for detailed criteria).

Preventing Readmissions

In patients with diabetes, the hospital readmission rate is between 14 and 20% (86). Risk factors for readmission include lower socioeconomic status, certain racial/ethnic minority groups, comorbidities, urgent admission, and recent prior hospitalization (86). Of interest, 30% of patients with two or more hospital stays account for over 50% of hospitalizations and their accompanying hospital costs (87). While there is no standard to prevent readmissions, several successful strategies have been reported, including an intervention program targeting ketosis-prone patients with type 1 diabetes (88), initiating insulin treatment in patients with admission A1C >9% (75 mmol/mol) (89), and a transitional care model (90). For patients with diabetic kidney disease, patient-centered medical home collaboratives may decrease risk-adjusted readmission rates (91).

References
51. Umpierrez GE, Korytkowski M. Is incretin-based therapy ready for the care of hospitalized patients with type 2 diabetes? Insulin therapy has proven itself and is considered the mainstay of treatment. Diabetes Care 2013;36:2112–2117
64. Umpierrez GE. Basal versus sliding-scale regular insulin in hospitalized patients with hyperglycemia during enteral nutrition therapy. Diabetes Care 2009;32:751–753
75. Harrison VS, Rustico S, Palladino AA, Ferrara C, Hawkes CP. Glargine co-administration with intravenous insulin in pediatric diabetic ketoacidosis is safe and facilitates transition to a subcutaneous regimen. Pediatr Diabetes 2017;18:742–748
The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

Managing the daily health demands of diabetes can be challenging. People living with diabetes should not have to face additional discrimination due to diabetes. By advocating for the rights of those with diabetes at all levels, the American Diabetes Association (ADA) can help to ensure that they live a healthy and productive life. A strategic goal of the ADA is that more children and adults with diabetes live free from the burden of discrimination. The ADA is also focused on making sure cost is not a barrier to successful diabetes management.

One tactic for achieving these goals has been to implement the ADA’s Standards of Care through advocacy-oriented position statements. The ADA publishes evidence-based, peer-reviewed statements on topics such as diabetes and employment, diabetes and driving, insulin access and affordability, and diabetes management in certain settings such as schools, child care programs, and correctional institutions. In addition to the ADA’s clinical documents, these advocacy statements are important tools in educating schools, employers, licensing agencies, policy makers, and others about the intersection of diabetes medicine and the law and for providing scientifically supported policy recommendations.

ADVOCACY STATEMENTS

Partial list, with the most recent publications appearing first

Insulin Access and Affordability Working Group: Conclusions and Recommendations (1)
(first publication 2018)

The ADA’s Insulin Access and Affordability Working Group compiled public information and convened a series of meetings with stakeholders throughout the insulin supply chain to learn how each entity affects the cost of insulin for the consumer. Their conclusions and recommendations are published in the ADA statement “Insulin Access and Affordability Working Group: Conclusions and Recommendations” (https://doi.org/10.2337/dc18-0019).
Diabetes Care in the School Setting (2)
(first publication 1998; latest revision 2015)
A sizable portion of a child's day is spent in school, so close communication with and cooperation of school personnel are essential to optimize diabetes management, safety, and academic opportunities. See the ADA position statement “Diabetes Care in the School Setting” (https://doi.org/10.2337/dc15-1418).

Care of Young Children With Diabetes in the Child Care Setting (3)
(first publication 2014)
Very young children (aged <6 years) with diabetes have legal protections and can be safely cared for by child care providers with appropriate training, access to resources, and a system of communication with parents and the child's diabetes provider. See the ADA position statement “Care of Young Children With Diabetes in the Child Care Setting” (https://doi.org/10.2337/dc14-1676).

Diabetes and Driving (4)
(first publication 2012)
People with diabetes who wish to operate motor vehicles are subject to a great variety of licensing requirements applied by both state and federal jurisdictions, which may lead to loss of employment or significant restrictions on a person's license. Presence of a medical condition that can lead to significantly impaired consciousness or cognition may lead to drivers being evaluated for their fitness to drive. People with diabetes should be individually assessed by a health care professional knowledgeable in diabetes if license restrictions are being considered, and patients should be counseled about detecting and avoiding hypoglycemia while driving. See the ADA position statement “Diabetes and Driving” (https://doi.org/10.2337/dc14-S097).

Editor's note: Federal commercial driving rules for individuals with insulin-treated diabetes changed on 19 November 2018. These changes will be reflected in an updated ADA statement.

Diabetes and Employment (5)
(first publication 1984; latest revision 2009)
Any person with diabetes, whether insulin treated or noninsulin treated, should be eligible for any employment for which he or she is otherwise qualified. Employment decisions should never be based on generalizations or stereotypes regarding the effects of diabetes. When questions arise about the medical fitness of a person with diabetes for a particular job, a health care professional with expertise in treating diabetes should perform an individualized assessment. See the ADA position statement “Diabetes and Employment” (https://doi.org/10.2337/dc14-S112).

Diabetes Management in Correctional Institutions (6)
(first publication 1989; latest revision 2008)
People with diabetes in correctional facilities should receive care that meets national standards. Because it is estimated that nearly 80,000 inmates have diabetes, correctional institutions should have written policies and procedures for the management of diabetes and for the training of medical and correctional staff in diabetes care practices. See the ADA position statement “Diabetes Management in Correctional Institutions” (https://doi.org/10.2337/dc14-S104).

References
Disclosures: Standards of Medical Care in Diabetes—2019

Diabetes Care 2019;42(Suppl. 1):S184–S186 | https://doi.org/10.2337/dc19-SDIS01

Committee members disclosed the following financial or other conflicts of interest covering the period 12 months before December 2018.

<table>
<thead>
<tr>
<th>Member</th>
<th>Employment</th>
<th>Research grant</th>
<th>Other research support</th>
<th>Speakers’ bureau/ honoraria</th>
<th>Ownership interest</th>
<th>Consultant/ advisory board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Practice Committee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joshua J. Neumiller, PharmD, CDE, FASCP, Chair</td>
<td>Washington State University</td>
<td>None</td>
<td>None</td>
<td>Diabetes Spectrum (Editorial)</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Christopher P. Cannon, MD</td>
<td>Brigham and Women’s Hospital</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Alnylam, Amarin, Amgen, Merck*</td>
<td>None</td>
</tr>
<tr>
<td>Jill Crandall, MD</td>
<td>Albert Einstein College of Medicine</td>
<td>None</td>
<td>None</td>
<td>Data and Safety Monitoring Board for National Institutes of Health–sponsored studies</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David D’Alessio, MD</td>
<td>Duke University, Division of Endocrinology</td>
<td>None</td>
<td>Merck, Eli Lilly, vTv Therapeutics</td>
<td>None</td>
<td>Diabetes Care, Diabetes Care (Editorial)</td>
<td>None</td>
<td>Eli Lilly Endocrine Society</td>
</tr>
<tr>
<td>Ian H. de Boer, MD, MS</td>
<td>University of Washington</td>
<td>None</td>
<td>Medtronic, Abbott</td>
<td>None</td>
<td>None</td>
<td>Ironwood</td>
<td>None</td>
</tr>
<tr>
<td>Mary de Groot, PhD</td>
<td>Indiana University School of Medicine Diabetes Translational Research Center</td>
<td>None</td>
<td>None</td>
<td>Diabetes Care (Editorial)</td>
<td>None</td>
<td>Johnson & Johnson Diabetes Institute, Eli Lilly</td>
<td>None</td>
</tr>
<tr>
<td>Judith Fradkin, MD</td>
<td>National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Kathryn Evans Kreider, DNP, APRN, FNP-BC, BC-ADM</td>
<td>Duke University Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Amgen</td>
<td>None</td>
</tr>
<tr>
<td>Member</td>
<td>Employment</td>
<td>Research grant</td>
<td>Other research support</td>
<td>Speakers’ bureau/ honoraria</td>
<td>Ownership interest</td>
<td>Consultant/ advisory board</td>
<td>Other</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>-------------------------</td>
<td>----------------------------</td>
<td>---------------------</td>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>David Maahs, MD, PhD</td>
<td>Stanford University, School of Medicine</td>
<td>National Institutes of Health, JDRF, National Science Foundation, Helmsley Charitable Trust, Medtronic#, Dexcom#, Insulet#, Bigfoot Biomedical#, Tandem#, Roche#</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Abbott, Eli Lilly, Helmsley Charitable Trust, Insulet, Sanofi</td>
<td>Secretary-General of the International Society for Pediatric and Adolescent Diabetes</td>
</tr>
<tr>
<td>Nisa Maruthur, MD, MHS</td>
<td>Johns Hopkins University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Medha N. Munshi, MD</td>
<td>Beth Israel Deaconess Medical Center, Harvard Medical School</td>
<td>Sanofi, Dexcom</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Sanofi, Eli Lilly</td>
<td>None</td>
</tr>
<tr>
<td>Maria Jose Redondo, MD, PhD, MPH</td>
<td>Texas Children’s Hospital–Baylor College of Medicine</td>
<td>Medtronic, Caladrius</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Guillermo E. Umpierrez, MD, CDE, FACE, FACP</td>
<td>Emory University</td>
<td>Merck#, Sanofi#, Novo Nordisk#, Insulcloud#</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Sanofi, Janssen</td>
<td>BMI Open Diabetes Research & Care Editor in Chief</td>
</tr>
<tr>
<td>Jennifer Wyckoff, MD</td>
<td>University of Michigan</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Epic Endocrine Steering Committee</td>
<td>None</td>
</tr>
<tr>
<td>ADA Nutrition Consensus Report Writing Group—Liaison</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melinda Maryniuk, MEd, RDN, CDE</td>
<td>Maryniuk & Associates Diabetes and Nutrition Consultants</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>American College of Cardiology—Designated Representative (Section 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandeep Das, MD, MPH, FACC</td>
<td>University of Texas Southwestern Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>AstraZeneca*, Sanofi*, GlaxoSmithKline, Amgen*, Boehringer Ingelheim*, AstraZeneca*, Novo Nordisk*, Merck (Diabetes), Eisai, Glytec, Janssen*, Intarcia, Novartis, Bayer</td>
<td>None</td>
</tr>
<tr>
<td>Mikhail Kosiborod, MD, FACC</td>
<td>University of Missouri-Kansas City School of Medicine</td>
<td>AstraZeneca*, Boehringer Ingelheim*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>American Diabetes Association Staff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>William T. Cefalu, MD</td>
<td>American Diabetes Association</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Erika Gebel Berg, PhD</td>
<td>American Diabetes Association</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mindy Saraco, MHA</td>
<td>American Diabetes Association</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Member</td>
<td>Employment</td>
<td>Research grant</td>
<td>Other research support</td>
<td>Speakers’ bureau/ honoraria</td>
<td>Ownership interest</td>
<td>Consultant/ advisory board</td>
<td>Other</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Matthew P. Petersen</td>
<td>American Diabetes Association</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sacha Uelmen, RDN, CDE</td>
<td>American Diabetes Association</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Shamera Robinson, MPH, RDN</td>
<td>American Diabetes Association</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

*≥$10,000 per year from company to individual; $grant or contract is to university or other employer.
Index

A1C, S14–S15, S61–S65. see also glycemic targets
advantages of, S15
age and, S15
cardiovascular disease and, S64, S65
in children and adolescents, S20, S62, S151, S156
continuous glucose monitoring
reduction of, S76
discharge planning, S178–S179
ethnic variability in, S15, S62
glucose assessment, S62–S63
goals, S63–S64
goals, setting/modifying, S64–S66
hemoglobinopathies, S14, S15
HIV and, S42
limitations of, S62
microvascular complications and, S63–S65
in older adults, S141, S142
other conditions affecting, S15
performance of, S14–S15
physical activity benefits, S52
prediabetes, S17
pregnancy values, S14, S15, S166, S167
race/ethnicity, S15
pregnancy, S169
prediabetes, S17
prediabetes/type 2 criteria, S18
metabolic surgery, S85, S86
BMI cut point, S17, S20
risk-based screening, S18, S19
Aspart, S97
Aspart 70/30, S97
ascorbate, S96
ACCord BP trial, S104–S106
ACCORD MIND trial, S140
ACCORD study, S40, S64, S65, S67, S127
ACE inhibitors
children and adolescents, S153, S154
chronic kidney disease, S128–S129
hypertension, S106–S108
pregnancy, S169
retinopathy, S131
acute kidney injury, S126
ADA evidence-grading system, S2
ADAG study, S62, S66
ADA statements, S1
adolescents. see children and adolescents
ADVANCE BP trial, S105
ADVANCE study, S64, S65, S67
advocacy position statements, S6, S182–S183
aerobic exercise, S52
Affordable Care Act, S9, S160
African Americans
A1C as predictive in, S17
A1C variability in, S15, S52, S62
BMI cut point, S20
exercise targets in, S52
food insecurity in, S10
hemoglobinopathies in, S15
hypoglycemia in, S67
idiopathic type 1 diabetes in, S16
risk-based screening, S18
agave syrup, S51
age, S15, S20
α-glucosidase inhibitors, S31, S96
AIM-HIGH trial, S112
albiglutide, S116
alcohol, S49, S51
alogliptin, S96, S117, S118, S176
American Indians, S18
amylin mimetics, S83, S96
angiotensin receptor blockers (ARBs)
children and adolescents, S153, S154
chronic kidney disease, S128–S129
hypertension, S106–S108
pregnancy, S169
retinopathy, S131
anorexia nervosa, S144, S145
anticholinergics, S83
anticonvulsants, S83
antidepressants, S83
antihistamines, S83
antihyperglycemics
cardiovascular disease, S115–S119
heart failure, S118
hospital care, S175–S176
obesity management, S83
type 2 diabetes, S92, S93
antihypertensives
cardiovascular disease, S104, S106–S108
chronic kidney disease, S128
pregnancy, S169
antioxidant supplementation, S51
antiplatelet agents, S113–S114
anxiety disorders evaluation, S42, S55
ARRIVE trial, S113
ASCEND trial, S113, S114
Asians Americans
BMI cut point, S17, S20
idiopathic type 1 diabetes in, S16
metabolic surgery, S85, S86
prediabetes/type 2 criteria, S18
risk-based screening, S18, S19
Asparg, S97
Asparg 70/30, S97
ASPIRE study, S76
aspirin
cardiovascular disease and, S113–S114
preeclampsia, S167–S169
resistance, S114
retinopathy and, S129
ASPREE trial, S113
assisted living facilities, S144, S145
ASCEND trial, S113, S114
bariatric surgery referrals, S55
bariatric surgery referrals, S55
BARI 2D trial, S132
basal insulin analogs, S97–S99
bedside blood glucose monitoring, S175
behavioral therapy, S82–S83
β-blockers, S114
beverage consumption, S5
biguanides, S96
bile acid sequestrants, S96
blood glucose meter accuracy, S74
blood pressure control. see hypertension
blood pressure targets, S104
BMI, ethnicity and, S17, S20
board certified-advanced diabetes management
(BC-ADM), S47
bromocriptine, S96
canagliflozin, S96, S98, S115–S116, S128
cancer evaluation, S39
CANVAS-Renal (CANVAS-R) trial, S115–S118
CANVAS trial, S115–S119, S127, S128
carbohydrates, S49, S50
cardiovascular disease, S103–S119
A1C and, S64, S65
antihyperglycemics, S115–S119
antilipid agent, S113–S114
atherosclerotic, defined, S103
atherosclerotic, pharmacology in
type 2, S92, S98
cardiac testing, S114–S115
children and adolescents, S153–S155, S159
chronic kidney disease and, S128–S129
fats (dietary) and, S51
heart failure, S103, S114, S118–S119
hypertension, S104–S113
lifestyle interventions, S115
obesity management and, S82
pharmacology, S115–S119
pharmacology outcomes, S98
physical activity benefits, S52
prevention of, S31
primary prevention/aspirin, S113–S114
primary prevention/statins, S110
recommendations, S114
revisions summary, S5
risk assessment, S36, S103–S104
risk factors, S17, S20, S66
screening, S114, S115
secondary prevention/statins, S111
statins, S109–S113
stroke, see stroke
treatment, S114
care delivery systems
Affordable Care Act, S9, S160
background, S8
risk-based team, S8
chronic care model, S8–S9, S34
social context in, S9–S10
system-level improvement strategies, S8
telemedicine, S4, S5, S8–S9, S31, S129
carotenoids, S51
Caucasians
children and adolescents, S148–S160
AIC targets in, S151, S156
AIC validity in, S20, S62
autoimmune conditions in, S152
cardiac function testing, S159
cardiometabolic risk factor management, S153–S155
celiac disease, S152–S153
complications prevention/management, S158–S160
continuous glucose monitoring in, S149, S151
diabetic ketoacidosis in, S149, S156, S157
DSMES, S149
dyslipidemia, S153–S154, S159
eating disorders in, S151
glycemic control type 1, S151–S152
glycemic control type 2, S156–S157
hypertension, S153
hypoglycemia in, S67
immune-mediated diabetes, S16
insulin pumps, S72–S73
lifestyle management, S156
metabolic surgery, S158
monogenic diabetes in, S25
nephropathy, S154
neuropathy, S155, S158
new-onset management algorithm, S157
nutrition therapy, S149, S156
obesity management, S150, S155, S156
pediatric to adult care transition, S160
pharmacology, S156–S158
physical activity/exercise, S51, S52, S149–S150, S156
preconception counseling, S150, S151
psychosocial issues, S150–S151, S159–S160
real-time CGM in, S75
retinopathy, S154–S155, S158–S159
revisions summary, S6
school/child care, S150
shared decision making, S150–S151
smoking, S154
thyroid disease, S152
type 2 diabetes in, S17, S18, S155–S160
type 1 diabetes in, S13–S14, S148–S155
chronic care model, S58–S59, S34
chronic kidney disease, S124–S129
acute kidney injury, S126
albuminuria screening, S125
albuminuria treatment, S128
antihypertensives, S128
cardiovascular disease and, S128–S129
children and adolescents, S154, S158–S159
complications of, S126
diagnosis of, S125
eGFR assessment, S125
epidemiology, S125
glucose-lowering medications, renal effects, S127
glycemic targets, S127
hypertension and, S124, S128–S129
nutrition therapy, S50, S53, S124, S127
pharmacology, S92, S97, S125, S127–S128
recommendations, S124–S125
referrals, S129
renal replacement treatment, S125, S129
screening, S124
staging of, S125–S126
surveillance, S126–S127
treatment, S124–S129
CKD. see chronic kidney disease classification, S4, S13–S14
clopidogrel, S113, S114
cognitive impairment/dementia evaluation, S39–S40
older adults, S140
risk factors, S67
statins and, S113
crite, S113
community health workers, S10
community screening, S20
community support, S10
comorbidities, S4, S36, S39–S43
concentrated human regular insulin, S97, S99
consensus reports, S1–S2
contact dermatitis, S77
continuous glucose monitoring (CGM), S74–S77
accuracy, S74, S75
AIC measurement with, S15
AIC reduction, S76
AIC testing and, S62
basal insulin/oral agents, S73–S74
children and adolescents, S149, S151
as complementary method, S73
flash, S76–S77
function, applications of, S75
glucose assessment, S62–S63
glycemic control impacts, S75
hospital care, S175
hypoglycemia impacts, S67, S75, S76
intensive insulin regimens, S73
optimization, S73
pregnancy, S169
real-time, S75–S76
recommendations, S74–S76
continuous subcutaneous insulin injection (CSII), S72–S73
contraception, S170
counterfeit strips, S74
CREDENCE trial, S128
CVD. see cardiovascular disease
cystic fibrosis, S13
cystic fibrosis–related diabetes, S23
DAMOCLES trial, S135
dapagliflozin, S96, S128
da Qing Diabetes Prevention Study, S30
DASH diet, S48, S109
deglucidec, S97
dental care, S20, S41
depression evaluation, S42, S55
detemir, S97
Diabetes Control and Complications Trial (DCCT) trial, S65, S66, S67, S72, S91, S127, S140, S152
diabetes distress, S55–S56
Diabetes Prevention Program (DPP), S17, S29, S30, S31
Diabetes Prevention Program Outcomes Study (DPPOS), S30, S51, S96
Diabetes Prevention Recognition Program (DPPR), S31
diabetes self-management education and support (DSMES), S9, S10
benefits of, S47
cardiac function testing, S149, S151
diabetic ketoacidosis
in children and adolescents, S149, S156, S157
epidemiology, S13–S14
hypoglycemia targets and, S68
hospital care, S178
nutrition therapy, S48, S50
pregnancy, S169
as pump complication, S72, S73
referrals, S55
risk factors, S16
in type 2 diabetes, S18
diabetic kidney disease. see chronic kidney disease
diabetic macular edema, S129, S131
diabetic retinopathy. see retinopathy
Diabetic Retinopathy Study (DRS), S130–S131
diagnosis
AIC. see A1C
CFRD, S23
community screening, S20
confirming, S15–S16
criteria, S15
fasting plasma glucose (FPG), S14, S15, S20, S23
IFG, S17
MODY, S13, S25
monogenic diabetes syndromes, S13, S24–S25
neonatal diabetes, S24, S25
one-step strategy, GDM, S21–S22
oral glucose tolerance test (OGTT), S14, S20, S22
posttransplantation diabetes mellitus, S23–S24
revisions summary, S4
testing interval, S20
2-h plasma glucose (2-h PG), S14, S15
two-step strategy, GDM, S21, S22
type 1 diabetes, S15, S16–S17
type 2 diabetes, S157–S20
DIAMOND study, S76
Dietary Reference Intakes (DRI), S168
discharge planning, S178–S179
disordered eating behavior evaluation, S42–S43
diabetes ketoacidosis, see DKA
dopamine-2 agonists, S96
DPP-4 inhibitors
 in combination therapy, S93–S94, S97–S98
costs, S96
 heart failure, S118
hospital care, S176
 indications, considerations, S93
 older patients, S143–S145
 in renal transplant recipients, S24
dulaglutide, S96
duloxetine, S132
dumping syndrome, S86
e-cigarettes, S5, S6, S53–S54, S154
 economic costs of diabetes, S8
EDIC study, S64–S67, S127
ELIXA trial, S116–S118
empagliflozin, S96, S98, S115, S116, S119, S128
EMPA-REG OUTCOME trial, S115, S117–S119, S127, S128
end-of-life/palliative care, S141, S144, S146
enteral/parenteral feedings, S177
epalrestat, S129
erectile dysfunction, S133
ertugliflozin, S96
erthropoietin therapy, S15
ETDRS, S130
ethnicity, S15, S20, S62. see also specific ethnicities
exenatide, S112
exercise. see physical activity
EXSCEL trial, S116–S118
eye disease. see diabetic retinopathy
exenatide ER, S96
fasting plasma glucose (FPG), S14, S15, S20, S23
fats (dietary), S49–S51
fenofibrate, S112
fibrate, S112
finerenone, S129
Finland study, S16
Finnish Diabetes Prevention Study, S30
flash CGM, S76–S77
food insecurity, S10
foot care
 hyperbaric oxygen therapy, S134–S135
 infections, S134
 loss of protective sensation, S131, S134
neuropathy, S133–S135
 patient education, S134
 peripheral arterial disease, S133, S134
 recommendations, S133
 revisions summary, S5
 treatment, S134
ulcers/amputations risk, S133–S134
footwear, S134
FOURIER trial, S111
fractures, S40–S41
frailty, S141–S142
FRAX score, S41
gabapentin, S5, S83
 gastrointestinal neuropathy, S132
 gastroparesis, S133
 genitourinary autonomic neuropathy, S132
German study, S16
 gestational diabetes mellitus, S6, S13, S20–S23, S76, S167–S170
GI surgery. see metabolic surgery
 glargine, glargine biosimilar, S97
glimepiride, S96
glipizide, S96
GLP-1 receptor agonists
 cardiovascular disease outcomes, S65, S98, S114, S116
 in CKD, S127, S128
 in combination therapy, S93–S94, S97–S99
costs, S95, S97
 heart failure, S118–S119
hospital care, S176
 indications, considerations, S93
 obesity management, S85
 older patients, S143–S145
stroke and, S116
 type 1 diabetes, S92
 type 2 diabetes prevention/delay, S31
 glucagon, S56–S58
 glucocorticoids, S83, S177
 glucose oxidase systems, S74
 glulisin, S97
 gluten-free diets, S152, S153
 glyburide, S96, S167
 glycemic index/glycemic load, S50
 glycemic targets, S61–S68. see also A1C
 cardiovascular disease and, S64, S65
 continuous glucose monitoring impacts, S75
 evaluation of, S36, S39, S61–S63
 glucose assessment, S62–S63
 hospital care, S174–S175
 intercurrent illness and, S68
 management algorithm, S35
 moderate vs. tight control, S174–S175
 nonpregnant adults, S66
 physical activity and, S52
 in pregnancy, S166–S167, S169
 preprandial, S167
 revisions summary, S5
 G6PD deficiency, S4, S14, S15
HAPO study, S21, S167
Harmony Outcomes trial, S116
hearing impairment evaluation, S41
hemodialysis, S15
hemoglobinopathies, S14, S15
hepatitis B vaccine, S36, S38–S39, S127
herbal supplements, S49, S51
Hispanics. see Latinos
HIV evaluation, S41
homelessness, S10
honey, S51
hospital care, S173–S179
 admission considerations, S173–S174
 admission/readmission prevention, S179
 antihyperglycemics, S175–S176
 bedside blood glucose monitoring, S175
 continuous glucose monitoring, S175
delivery standards, S173–S174
 diabetes care providers in, S174
diabetes ketoacidosis, S178
discharge planning, S178–S179
 enteral/parenteral feedings, S177
 gluccorticoid therapy, S177
 glucose abnormalities definitions, S174
glycemic targets, S174–S175
hyperglycemia management, S24
hyperosomolar hyperglycemic state, S178
hypoglycemia, S176–S177
insulin, IV to subcutaneous transition, S176
insulin therapy, S174–S176
medical nutrition therapy, S177
noninsulin therapies, S176
perioperative care, S177–S178
physician order entry, S174
quality assurance standards in, S174
revisions summary, S6
self-monitoring of blood glucose, S177
stroke, S174
type 1 diabetes, S176
HOT trial, S105
HPS2-THRIVE trial, S112
Human NPH, S97
human regular insulin, S97
hydralazine, S106
hyperbaric oxygen therapy, S134–S135
hyperglycemia
 ARV-associated, S41
 defined, S174
 evaluation of, S40
 exercise-induced, S149–S150
 maternal, S22
 postprandial as predictive, S66
 posttransplant, S23
 risk factors, S10
hyperosmolar hyperglycemic state, S178
hypertension, S104–S113
antihypertensives, S104, S106–S108
bedtime dosing, S107
blood pressure targets, S104
children and adolescents, S153
chronic kidney disease and, S124, S128–S129
defined, S104
hyperkalemia/acute kidney injury, S107–S108
lipid management, S109–S113
meta-analyses of trials, S106
multiple-drug therapy, S107, S108
in older adults, S141
pharmacologic interventions, S107–S113
in pregnancy, S104, S106
randomized clinical trials, S104–S106
resistant, S108, S109
screening/diagnosis, S104
treatment algorithm, S108
treatment goals, S104
treatment strategies, S107–S113
treatment targets individualization, S106
hypertriglyceridemia, S112
hypoglycemia, S66–S68
A1C testing and, S62
anxiety disorders and, S42
cardiovascular disease and, S65
continuous glucose monitoring impacts, S75, S76
definitions, S67
exercise-induced, S53, S149–S150
hospital care, S176–S177
insulin therapy and, S91
moderate vs. tight glycemic control, S174–S175
in older adults, S67, S140, S145
postprandial, post-RYGB, S86
predictors of, S176
prevention, S68, S176–S177
symptoms of, S67
triggering events, S176
hypoglycemia unawareness, S42, S66–S68
IDPP-1, S72
injection-related anxiety, S42
inhaled insulin, S91, S97, S99
hypoglycemia and, S91
ear critical care setting, S175
emergency care, S176
hospital care, S174–S176
hypoglycemia and, S91
indications, considerations, S93, S96–S97
inhaled insulin, S91, S97, S99
injection technique, S91
intravenous to subcutaneous transition, S176
critical care setting, S175–S176
older adults, S142–S143, S145
prandial insulin, S99
premixed insulin, S97, S99
type 1 diabetes, S90–S92
type 2 diabetes, S96, S98–S99
insurance, S47, S77
intermediate-acting insulin analogs, S97
intermittently scanned CGM, S76–S77
Internet-based DSMES, S47
islet transplantation, S92
JDRF CGM trial, S75, S76
ketoadisis. see diabetic ketoadisis
kidney disease. see chronic kidney disease
Kumamoto Study, S64
labelotol, S106
language, S10, S35–S36
laropiprant, S112
Latinos
A1C variability in, S62
exercise targets in, S52
food insecurity in, S10
risk-based screening, S17, S18
LEADER trial, S116–S118, S127, S128
legacy effect, S66
lifestyle management, S46–S55
cardiovascular disease, S115
children and adolescents, S156
cost effectiveness, S31
DSMES, S9, S10, S31–S32, S46–S47,
S54
gestational diabetes mellitus, S167
hypertension, S107
medical nutrition therapy. see medical nutrition therapy
older adults, S141–S142
revisions summary, S4–S5
technology-assisted interventions, S31
type 2 diabetes prevention/delay, S29–S31
weight loss, S48–S51
linagliptin, S96
lipid management,
medical nutrition therapy
see also metabolic therapy
metformin
cardiovascular disease, S114, S116–S118
children and adolescents, S156–S158
in chronic kidney disease, S127
costs, S96
gestational diabetes mellitus, S167, S168
indications, considerations, S93
initiation, S93
older patients, S143
type 1 diabetes, S92
type 2 diabetes, S92
type 2 diabetes prevention/delay, S31
vitamin B12 deficiency and, S51, S92
methylxopropyl, S106
metoclopramide, S133
micronutrients, S49, S51
microvascular complications, S5, S63–S65, S124–S135. see also specific conditions
miglitol, S95
MiG TOFU study, S168
mineralocorticoid receptor antagonists, S109, S129
MODY, S13, S25
monogenic diabetes syndromes, S13, S24–S25
multiple daily injections (MDI), S72–S73, S76, S91
naltrexone/bupropion ER, S84
nateglinide, S96
neonatal diabetes, S24, S25
nephropathy. see chronic kidney disease
neuropathy, S131–S133, see also autonomic neuropathy; peripheral neuropathy characterization, S131
children and adolescents, S155, S158
diagnosis, S131–S132
distal symmetric polyneuropathy, S131
erectile dysfunction, S133
foot care, S133–S135
gastrointestinal, S132
gastroparisus, S133
neuropathic pain, S132, S133
orthostatic hypotension, S133
pharmacology, S132–S133
recommendations, S131
screening, S131
treatment, S131, S132
niacin, S112
NICE-SUGAR study, S174
nifedipine, S106
NODAT, S23
nonalcoholic fatty liver disease (NAFDL), S4, S6, S40, S59–S59
non-Hispanic whites. see Caucasians
nonnutritive sweeteners, S5, S49, S51, S53
nonproliferative diabetic retinopathy, S53
obstructive sleep apnea, S41, S158, S159
obesity management, S82–S83
revisions summary, S4
type 2 diabetes prevention/delay, S30

obesity management, S81–S87
anthyperglycemics, S83
approved medications, S83–S85
assessment, S81–S82
behavioral therapy, S82–S83
benefits of, S81
cardiovascular disease and, S82
children and adolescents, S150, S155, S156
concomitant medications, S83
hypertension, S107
lipohypertrophy, S91
medical devices, S85
medical nutrition therapy, S48–S51
metabolic surgery, S85–S87
nutrition, S82–S83
pharmacotherapy, S83–S84
physical activity, S82–S83
pregnancy, S169
revisions summary, S4
treatment options, S2
weight loss, S48–S51

obstructive sleep apnea, S41, S158, S159
olanzapine, S83

older adults, S139–S146
A1C in, S141, S142
aspirin and, S113–S114
complications, reduced functionality, S64, S141
DMSES, S141
frailty in, S141–S142
healthy, good functional status, S141, S142
hypertension in, S141
hypoglycemia in, S67, S140, S145
hypoglycemic admissions prevention, S179
insulin therapy, S142–S143, S145
lifestyle management, S141–S142
long-term care facilities, S144, S145
neurocognitive function, S140
palliative/end-of-life care, S141, S144, S146
pharmacology, S94, S96–S97, S142–S145
physical activity recommendations, S51
recommendations, S139
revisions summary, S6
screening, S139–S140
skilled nursing facilities, S144, S145
stroke in, S139, S142
treatment goals, S140–S142

treatment simplification/deintensification/deprescribing, S144
one-step strategy, GDM, S21–S22
oral glucose tolerance test (OGTT), S14, S20, S22
orlistat, S84
orthostatic hypotension, S133
oxgen in meter accuracy, S74
palliative/end-of-life care, S141, S144, S146
pancreas transplantation, S92
pancreatitis, S13, S40, S112, S116
parenteral/enteral feedings, S177
patient-centered care
collaborative model of, S34–S36
pharmacology, S92, S93
population health, S7–S8
PCSCK9 inhibitors, S111, S113
pediatrics. see children and adolescents
diabetes periodontal disease screening, S41
peripheral arterial disease, S133, S134
peripheral neuropathy characterization, S131
diagnosis, S113–S132
micronutrients/supplements, S51
pharmacology, S31
physical activity and, S53
pre-exercise evaluation, S52–S53
prevention, S31
pharmacology, S90–S99, see also specific medications, medication classes
cardiovascular disease, S115–S119
cardiovascular disease outcomes, S98
children and adolescents, S156–S158
combination injectable, S99
combination therapy, S93–S94, S97–S98
costs, S96, S98
dual therapy, S92
gestational diabetes mellitus, S168
hypertension, S107–S113
initial therapy, S92–S97
injectables, S5, S97–S98
medication adherence, S9
medications as risk factor, S20
obesity management, S83–S84
older adults, S94, S96–S97, S142–S145
patient-centered care, S92, S93
patient factors, S5
revisions summary, S5
type 1 diabetes, S90–S92
type 2 diabetes, S92–S98
type 2 diabetes prevention/delay, S31
phentermine, S84
phentermine/topiramate ER, S84
phacoacoagulation therapy, S129–S131
physical activity, S51–S53
autonomic neuropathy and (see autonomic neuropathy) benefits, S52
children and adolescents, S51, S52
S149–S150, S156
DPD goals, S30
frequency/type of, S52
glycemic control and, S52
hypoglycemia and, S53
kidney disease, S50, S53
obesity management, S82–S83
peripheral neuropathy and (see peripheral neuropathy)
pre-exercise evaluation, S52–S53
recommendations, S51
retinopathy and, S53
revisions summary, S5
type 2 diabetes prevention/delay, S30–S31
physician order entry, S174
pioglitazone, S96
pneumococcal pneumonia vaccine, S36, S38
point-of-care meters, S175
polycystic ovary syndrome, S159, S167, S168
population health
care delivery systems, S8
community screening, S20
defined, S7
patient-centered care, S7–S8
recommendations, S7
posttransplantation diabetes mellitus, S23–S24
pramlintide, S92, S96
pregnancy, S165–S166
preconception counseling
children and adolescents, S150, S151
contraception, S170
pregnancy, S165–S166
prediabetes
diagnosis, S17–S20
gestational diabetes mellitus, S170
HIV and, S41
physical activity recommendations, S51
serious mental illness and, S43
type 2 diabetes prevention/delay, S30–S32
pregabalin, S132
pregnancy, S165–S170
A1C values in, S14, S15, S166, S167
antihypertensives and, S106
contraception, S170
diabetes, preexisting, S168–S169
diabetes risks in, S165
diabetic ketoacidosis, S169
drugs contraindicated, S106, S169
gestational diabetes mellitus, S6, S13, S20–S23, S76, S167–S170
glucose monitoring in, S166–S167
glycemic targets in, S160–S167, S169
hypertension in, S104, S106
insulin physiology in, S166
low-carbohydrate diets, S30, S48, S50
medical nutrition therapy, S48, S51
obesity management, S169
OGTT values in, S22, S169
postpartum care, S169–S170
preconception care, S166
preconception counseling, S165–S166
preeclampsia, S106, S167–S169
real-time CGM in, S76
retinopathy and, S129, S130
revisions summary, S6
premixed insulin products, S97, S99, S175
pregestins, S83
proliferative diabetic retinopathy, S53
protease inhibitors (PIs), S41
protein, S49, S50
psychosocial/emotional disorders evaluation, S41–S42, S54–S55
P2Y12 inhibitors, S113, S114
pump. see insulin pump
quality of care
evaluation of, S9
hospital care delivery standards, S173–S174
quality assurance standards in, S174
scientific evidence-grading system, S2
system-level improvement strategies, S8
ranibizumab, S129, S130
rapid-acting insulin analogs, S97
real-time CGM, S75–S76
referrals, S40, S55, S129
repaglinide, S96
resistance exercise, S52
retinal photography, S130
retinal screening, S174
real-time CGM, S75
rapid-acting insulin analogs, S97
sickle cell disease, S14
simvastatin, S111
sitagliptin, S96
skilled nursing facilities, S144, S145
sleep
hypoglycemia prevention, S68, S170
obstructive sleep apnea, S41, S158, S159
pattern/duration assessment, S36
pregnancy and, S170
quality effects, S36
smoking, S31, S53–S54, S154
social determinants of health, S59–S10
sodium, S49, S51
sodium consumption, S5
statins
cognition, effects on, S40
cognitive function and, S113
in combination therapy, S111, S112
diabetes with, S112–S113
dosing strategies, S111
patients <40 years, S111–S112
primary prevention, S110
randomized trials, S110–S113
recommendations, S109–S110
risk-based therapy, S110
secondary prevention, S111
type 1 diabetes, S111–S112
stroke
in children and adolescents, S158
combination therapy and, S112
CVD outcomes trials, S115–S117
GLP-1 receptor agonists and, S116
hospital care, S174
hypertension treatment and, S105–S106
hypothalamic, S112, S114
in older adults, S139, S142
risk reduction, S65, S105–S106, S111, S113
screening, S114
SGLT2 inhibitors and, S115–S116
structured discharge communication, S178–S179
sulfonfonylureas
in combination therapy, S93–S94, S97–S98
costs, S96
gestational diabetes mellitus, S168
indications, considerations, S93
older patients, S143
SUSTAIN-6 trial, S116–S118, S127
sweeteners, S5
tai chi, S51
tapentadol, S132–S133
TCAs, S83
technology. see also continuous glucose monitoring (CGM); self-monitoring of blood glucose (SMBG)
definitions, S71
in diabetes management, S71–S77
in diabetes prevention, S29, S31
insulin pumps, S72–S73, S76, S91
point-of-care meters, S175
TECOS trial, S117, S118
telemedicine, S4, S5, S8–S9, S31, S129
temperature in meter accuracy, S74
testosterone level evaluation, S41
thiazolidinediones
in combination therapy, S59–S54, S57–S58
costs, S96
heart failure, S118
indications, considerations, S93
older patients, S143
in renal transplant recipients, S24
type 2 diabetes prevention/delay, S31
thought disorders, S43
type 1 diabetes
albuminuria in, S127
autoimmune conditions in, S152
autoimmune diseases evaluation, S39
cardiovascular disease and, S65
celiac disease, S152–S153
CGM in, S76
in children and adolescents, S13–S14,
S148–S155
classification, S13–S14
diagnosis, S15, S16–S17
eating patterns, S48
hospital care, S176
idiopathic, S16
noninsulin treatments, S91–S92
pathophysiology, S14
pharmacology, S90–S92
physical activity benefits, S52
preconception care, S166
pregnancy, S168–S169
recommendations, S16
retinopathy, S129, S130
risk screening, S16–S17
staging, S14
statins, S111–S112
surgical treatment, S92
thyroid disease, S152
type 2 diabetes
cancer evaluation, S39
cardiovascular disease and, S65
CGM in, S76
children and adolescents, S17, S18,
S155–S160
chronic kidney disease and, S128
classification, S13–S14
combination therapy, S93–S94, S97–S98
diagnosis, S17–S20, S155–S156
DKA in, S18
dyslipidemia in, S112
insulin therapy, S95, S98–S99
Internet-based DSME, S47
obesity management, S82–S83
pathophysiology, S18
pharmacology, S92–S98
pharmacology, algorithm, S94
pregnancy, S168–S169
prevention/delay, S29–S32, S52
retinopathy, S129, S130
risk factors, S18, S20, S30
screening/testing, S17–S20, S155
<table>
<thead>
<tr>
<th>Statins</th>
<th>Vaccinations</th>
<th>Water intake</th>
</tr>
</thead>
<tbody>
<tr>
<td>S110</td>
<td>S36–S39</td>
<td>S5</td>
</tr>
<tr>
<td>U-500 Human Regular insulin</td>
<td>S97</td>
<td>S5</td>
</tr>
<tr>
<td>UK Prospective Diabetes Study (UKPDS)</td>
<td>S64, S66, S115</td>
<td>S5</td>
</tr>
<tr>
<td>VADT study</td>
<td>S64, S65</td>
<td>S5</td>
</tr>
<tr>
<td>Vitamin B12 deficiency</td>
<td>S31, S92</td>
<td>S5</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>S51</td>
<td>S5</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>S51</td>
<td>S5</td>
</tr>
</tbody>
</table>

- weight loss. see obesity management
- whites. see Caucasians
- yoga, S51
CALL FOR BREAKTHROUGH RESEARCH
ABSTRACT SUBMISSION CLOSES JANUARY 7, 2019

Submit your research to the world’s largest, most prominent meeting on diabetes—The American Diabetes Association’s Scientific Sessions. Share your research with colleagues from around the world. Accepted abstracts are published in the journal Diabetes®. A limited number of travel grants are available to qualified early career investigators.

Late breaking abstract submission opens on February 1, 2019 and closes on March 11, 2019.

Visit our website at scientificsessions.diabetes.org.